316.464

2005/2006 **GEOPHYSICAL OBSERVATORY** REPORTS

OF THE GEODETIC AND GEOPHYSICAL **RESEARCH INSTITUTE OF THE HUNGARIAN** ACADEMY OF SCIENCES

> YEAR 2005-2006

NAGYCENK GEOPHYSICAL OBSERVATORY

Special issue on the occasion of the 50th anniversary of the Observatory

"I often say when you can measure what you are speaking about and express it in numbers you know something about it, but when you cannot measure it, when you cannot express it in numbers, your knowledge of it is of meagre and unsatisfactory kind"

Lord Kelvin

Sopron 2007

1

•

GEOPHYSICAL OBSERVATORY REPORTS

OF THE GEODETIC AND GEOPHYSICAL RESEARCH INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES

YEAR

2005 - 2006

NAGYCENK GEOPHYSICAL OBSERVATORY IAGA CODE: NCK

Editor

V. Wesztergom

Technical editor

J. Szendrői

Contributors/Authors

A. Ádám	Á. Kis	F. Märcz	L. Szarka
P. Bencze	A. Koppán	A. Novák	J. Verő
J. Bór	K. Kovács	T. Prodán	Á. Wallner
Cs. Ferencz	I. Lemperger	G. Sátori	V. Wesztergom
R. G. Harrison	J. Lichtenberger	S. Szalai	B. Zieger

SOPRON

2007

2007 MAGYAR TURIOMÁNYOS AKADÉMIA KÖNYVTARA Exchange copies of this Report may be obtained from:

GEODETIC AND GEOPHYSICAL RESEARCH INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES H-9401 Sopron, P.O.B. 5 (Hungary)

HU–ISBN 978-963-8381-22-4 HU–ISSN 0133-459X

Felelős kiadó: Dr. Závoti József

director

Sopron, Csatkai E. u. 6-8. Tel.: +36-99-508-350

Data, figures and tables may be reproduced in books and journals on condition that the source is properly cited

$Cover \ illustration:$

Contours of a fine old magnetometer, manufactured by Nándor Süss in Kolozsvár. It served in Ógyalla, than in the Nagycenk Observatory until 1986. Altogether nearly 100 years!

> Hillebrand Nyomda Kft. Sopron, Csengery u. 51. Tel.: +36-99-333-800 Fax.: +36-99-330-900 Felelős vezető: Hillebrand Imre

Készült: 400 példányban

CONTENTS

Preface — V. Wesztergom	3
The 50th birthday of the Nagycenk Observatory and the international geophysical years — L. Szarka	5
I. Observatory reports 2005–2006	11
1. Description of the observatory — V. Wesztergom \ldots	11
2. Geomagnetism	15
Electric activity indices	15
Magnetic measurements and data processing $-V$. Wesztergom \ldots	27
Geomagnetic data	30
Hourly mean values of H, D, Z	31
Daily mean values of H, D, Z	45
Geomagnetic K indices	49
Special phenomena: SSC, sfe	61
Annual mean values of geomagnetic elements	63
3. Atmospheric electricity	65
Hourly means of the potential gradient	66
Schumann resonance observations — G. Sátori $\dots \dots \dots$	75
4. Meteorological observations	81
II. Latest studies	95
G. Sátori	95
Variation of geomagnetic activity – A study based on 50 years telluric ob- servations at Nagycenk Observatory — Á. Kis. A. Koppán. I. Lemperger.	101
1. Produn, J. Szenarol, J. Vero, V. Wesztergom	101
 Connection between whistlers and PCS puisation activity at time periods of quiet and disturbed geomagnetic conditions — Á. Kis, A. Koppán, I. Lemperger, T. Prodán, V. Wesztergom, J. Szendrői. Cs. Ferencz. I. Lichtenhamon 	100
The second stars of all stars a startist difference on the temple of Konstan	109
L. Szarka, V. Wesztergom	117
A study on the long term behavior of the impedance tensor at Nagycenk Geophysical Observatory — I. Lemperger, Á. Kis, A. Novák, J. Szendrői,	
V. Wesztergom, P. Bencze, L. Szarka	121

Long-term changes in atmospheric electricity observed at European	
stations during several decades in the last century $-$ F. Märcz.	
R. G. Harrison	129
On the dynamics of seasonal redistribution of global lightning as shown by	
Schumann resonance observations in the Széchenyi István Geophysical	
Observatory at Nagvcenk — G. Sátori \ldots	137
Long-term variations in pulsation activity and their relationship to solar wind velocity, geomagnetic activity, and F2 region electron density (abstract from <i>J. Geoph. Res.</i> , Vol. 96, No. A12, 1991, pp. 21,115–	
21.123) — B. Zieger	145
III. Rememberings	147
My research (developments) connected to the observatory — A. $\acute{A}d\acute{a}m$.	147
Atmospheric electric and ionospheric measurements in the Geophysical Ob- servatory Nagycenk: Some earlier and recent results — $P. Bencze \dots$	161
Summary of results of pulsation research at the Nagycenk Observatory $-$	
J. Verő	171
History of magnetic observation — \acute{A} . Wallner	179
IV. Photo gallery	183

Preface

The Széchenyi István Geophysical Observatory of the Hungarian Academy of Sciences is pleased to present the 2005–2006 reports in the Geophysical Observatory Report series.

In 2007 the Geophysical Observatory celebrates the 50th anniversary of its founding.

The anniversary is an opportunity to look back, to evaluate results and also to consider future possibilities. In this special anniversary issue historical papers and photos, a selection of notes from the guestbook and scientific results are also included.

The observatory was founded by the Hungarian Academy of Sciences, as perhaps the first Hungarian establishment dedicated to upper atmosphere and near-Earth space research. The observatory became operational on the beginning of the International Geophysical Year (IGY, between July 1957 and December 1958).

Present-day activity of the observatory is rooted in 240 years history of geophysical observations in Hungary. Measurements of the Earth's magnetic fields started at Nagyszombat University in 1768 and moved to Buda soon with the university. Buda Observatory was put into operation in 1777. It had to be replaced at the end of the 19th century due to industrial development and electrification of the capital. Konkoly Thege Miklós, director of the Central Institute of the Hungarian Kingdom for Meteorology and Earth Magnetism (Meteorológiai és Földdelejességi Magyar Királyi Központi Intézet) established the new geomagnetic observatory at Ogyalla in 1893. With the Treaty of Trianon the territory became a part of Czechoslovakia. After a chaotic period a temporary station was set up at Budakeszi and the final replacement of Ógyalla became fully operational in Tihanv in 1955. By that time the importance of solar terrestrial interactions and diagnostics of the ionosphere and magnetosphere had been recognized and the growing interest inspired the Geophysical Research Laboratory of the Sopron University, headed by professor Károly Kántás, to establish a purpose built observatory near Nagycenk. That is why the Széchenyi István Geophysical Observatory became known as Nagycenk Observatory (IAGA code: NCK) worldwide. Foundation of the observatory set in motion the permanent development of instrumentation, continuous international data services and scientific research especially in geomagnetism and aeronomy.

PREFACE

Nagycenk Geophysical Observatory has been supplying data since 1957. Geophysical Observatory Reports comprise earth current data from 1957 on, geomagnetic data from 1961 on and atmospheric electricity data from 1962 on.

Observatory is networked through the institute (Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences), data are available in near real time. The institute doesn't charge academic users for data products.

Further information and data including archived data are available by special arrangement at the institute:

Geodetic and Geophysical Research Institute Hungarian Academy of Sciences H-9401 Sopron, P.O.Box 5 Phone: +36-99-508340, e-mail: wv@ggki.hu

Foundations upon which we stand today were laid by the staff of the Geophysical Research Laboratory. Antal Ádám, Pál Bencze, Ferenc Märcz, József Verő and Ákos Wallner are still with us. We would like to express our admiration and gratefulness for everything that they have done during the 50 years. The patient guidance, scientific accuracy and precision.

On this occasion we acknowledge the assistance and the impact of the international and Hungarian geoscience societies and especially the generous support of the Hungarian Academy of Sciences, and the Hungarian Scientific Research Fund (OTKA, project numbers TS 408048 and NI 61013).

We would like to express our gratitude also to the COST 724 Action "Developing the Scientific Basis for Monitoring, Modelling and Predicting Space Weather" for coordination and outreach efforts.

In addition to our core activity commercial applications are searched for. We thank the collaboration and the revenue received for our space weather related studies to the MAVIR and AB AEGON companies.

Sopron, August 2007

V. Wesztergom

THE 50TH BIRTHDAY OF THE NAGYCENK OBSERVATORY AND THE INTERNATIONAL GEOPHYSICAL YEARS

L. SZARKA

The whole activity of the 50 years old Nagycenk Geophysical Observatory (in its full name: Széchenyi István Geophysical Observatory of Hungarian Academy of Sciences) is closely related to international geophysical co-operations, and its history is milestoned by such events as the International Geophysical Year 1957–1958 (the starting date), and the IGY+50 anniversary years, especially the Electronic Geophysical Year.

Introduction: IGY and the Observatory

As evaluated 50 years later (at the US002 session of IUGG General Assembly in Perugia), the International Geophysical Year (IGY) has meant a remarkable progress to the scientific disciplines represented in IUGG. The polar regions, the deep oceans, the Earth's interior, its atmosphere and the space beyond were explored at an unprecedented rate. New technologies like satellites and computers facilitated measurements, data collection and analysis and were applied in a global effort and with an extraordinary station density.

The Nagycenk Geophysical Observatory (Ádám and Verő 1958, Ádám et al. 1981, Bencze and Märcz 1981, Verő 1996, 2001, 2002) is one of the direct products of the International Geophysical Year 1957–1958.

IUGG/IAGA and the Observatory

Since that time, the Nagycenk Observatory has become an indispensable data source of earth science observations, related to electromagnetic phenomena in the Earth and in near-Earth space. By measuring the electromagnetic field on the Earth in a wide frequency range, the observatory data are relevant to the investigation of the following inter-related domains: Sun, interplanetary field, magnetosphere, ionosphere, atmosphere, Earth's crust, mantle and core, and their processes varying with time. (See the Annual Reports of the Observatory.)

L. SZARKA

The Institute, where the Observatory belongs to (Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, www.ggki.hu), all the three classical ways of scientific research: theory, numerical simulation and physical measurements are characteristic, and among the physical measurements the observatory measurements are our permanent data source (while the field works and the laboratory experiments are intermittent tools).

The name of the institute is "Geodetic and Geophysical", and the name of IUGG (founded in 1919, due to the activity among others by Baron Loránd Eötvös, but Hungary could became its member only in 1930) means International Union of "Geodesy and Geophysics" (www.iugg.org). The departments of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences (Geodesy, Seismology and Geophysics) are closely related to three of the seven (from 2007: eight) member associations of IUGG: IAG (International Association of Geodesy, www.iag-aig.org), IASPEI (International Association of Seismology and Physics of the Earth's Interior. www.iaspei.org) and IAGA (International Association of Geomagnetism and Aeronomy, www.iugg.org/iaga). In such a way, the Geodetic and Geophysical Research Institute provides the largest component of Hungarian IUGG activities.

The Nagycenk Observatory is a part of the Geophysical Department. Activities of its three groups (Geomagnetism, Aeronomy and Electromagnetic induction) are related to all the five IAGA divisions. The research in Sopron (feeded, first of all, by observatory data from Nagycenk) has been recognised by the IAGA in a special way: the 11th IAGA Scientific Assembly will be held in Sopron, August 23–30, 2009 (www.iaga2007sopron.hu, see in details in the Appendix).

IGY+50 and the Observatory

The IGY+50 events in Hungary start with the 50th birthday of the Nagycenk Observatory, to be held together with the Hungarian launching event of international geoscience years of 2007–2009 (Annual Meeting of Hungarian Geologists and Geophysicists, September 19–22, 2007).

All over the world several initiatives have been formed to celebrate IGY+50: the most general one is the International Year of Planet Earth 2007–2009 (www.yearofplanetearth.org, Szarka 2006, Ádám 2007), which is a UN year in 2008. The International Polar Year 2007–2009 (Bindschadler 2007, www.ipy.org, which is actually the fourth polar year: the third one was a part of the IGY itself) investigates the two polar regions (including their electromagnetic phenomena), while the International Heliophysical Year 2007–2008 (e.g., Baker 2007, Kecskeméty 2007, www.ihy2007.org) focuses on the heliosphere, where the new word "heliophysics" is a generalization experiment of the word "geophysics".

There have been and will be observatory-related events devoted to these three international geophysical years of 2007–2008, and also to the so-called GEOSS (Global Earth Obervation System of Systems). However, the observatory has the closest relationship with the Electronic Geophysical Year (www.egy.org), which is the IGY+50 initiative of IAGA.

It is self-understanding, that the Observatory has been and will be serving as a basis of international scientific co-operations. Its geomagnetic part, e.g., is a member of the IAGA-promoted INTERMAGNET network. Reports, research papers and rememberings in this book provide further examples.

Electronic Geophysical Year and the Observatory

The Electronic Geophysical Year, 2007-2008 (eGY) provides an opportunity for the international geoscientific community to focus effort on a 21st Century e-Science approach to issues of data stewardship: open access to data, data preservation, data discovery, data rescue, capacity building, and outreach. (Barton 2007, Parsons 2007). The development of Virtual Observatories and Laboratories is a central feature of eGY. In the VxO series, where x denotes the physical parameter, we find the following international initiatives: VCO (Virtual Carbon Observatory), VGMO (Virtual Geomagnetic Observatory), VHO (Virtual Heliophysical Observatory), ViRBO (Virtual Radiation Belt Observatory), VMO (Virtual Magnetospheric Observatories), VOO (Virtual Ocean Observatory), VSN (Virtual Seismic Network), VSO (Virtual Solar Observatory), AVO (Astrophysical Virtual Observatory), while NVO will be the US National Virtual Observatory. The Nagycenk Observatory data are relevant to VGMO, VHO, ViRBO, VMO, and most probably to VSN.

Conclusions for the next 50 years

The natural electromagnetic fields and their time variation contain information about the entire world, including the changing Earth and the whole heliospace. In order to understand e.g. the variable conditions in the near-Earth space (known as space weather), the energy coupling between the solar wind and the Earths magne-

L. SZARKA

tosphere (which might influence the Earth's climate), or the geophysical processes within the Earth, such monitoring measurements, as have been carried out since the IGY in the Nagycenk Geophysical Observatory, are absolutely indispensable: not only for the international scientific community, but also for the sustainability of human societies.

At the Perugia IUGG General Assembly the member associations gave an overview over the accomplishments in their fields during IGY and in the 50 years since. As Charles Barton, the resigning president of IAGA pointed out (Barton 2007): the question "What YOU have provided in terms of data to the scientific community?", will be more and more important in the future. The Nagycenk Observatory gives to this question a reassuring answer.

Acknowledgements

The observatory-related research of the Geophysical Department is supported first of all by the Hungarian Academy of Sciences, and recently (2006–2008) it is additionally supported by the Hungarian Scientific Research Fund (OTKA), project number NI 61013.

References

- Ádám A, Verő J 1958: Das Erdstromobservatium Nagycenk. *Geofisica Pura e applicata*, 39, 126–159.
- Ádám A, Verő J, Cz. Miletits J, Holló L, Wallner Á 1981: The Geophysical Observatory near Nagycenk. I. Electromagnetic measurements and processing of data. Acta Geodaet., Geophys. Montanist. Hung. 16, 333-351.
- Ádám J, 2007: A Föld Bolygó Nemzetközi Éve. Magyar Tudomány, 167, 1, 108–110.
- Annual Reports of the Observatory, published regularly from 1957. 1957-1960: in Acta Technica Hungarica)
- Baker D 2007: The Earth's radiation belts: history and future prospects. Paper presented at the 24th IUGG General Assembly, Perugia
- Barton C 2007: eGY Towards an Earth and Space Science Information Commons. Paper presented at the 24th IUGG General Assembly, Perugia
- Bencze P, Märcz F 1981: The Geophysical Observatory near Nagycenk. II. Atmospheric electric and ionospheric measurements. Acta Geodaet., Geophys. et Montanist. Acad. Sci. Hung., 16, 353-357.
- Bindschadler R 2007: Is it still the same old Antarctic ice sheet? A look back at Antarctic glaciology since the IGY. Paper presented at the 24th IUGG General Assembly, Perugia

GEOSS - papers published in Magyar Tudomány, 2007, May

Kecskeméty K 2007: A Nemzetközi Heliofizikai Év. Magyar Tudomány, 167, 6, 809-814.

Parsons M 2007: Data for the Ages-A look at datas role in science over the 125 year history of IPY. Paper presented at the 24th IUGG General Assembly, Perugia

Szarka L 2006: A Föld Bolygó Nemzetközi Éve – 2008. Magyar Geofizika, 47, 188–188.

- Verő J 1996: A Nagycenki Geofizikai Obszervatórium: a geomágneses tér mérésének története, Környei A, Szende K, eds, Tanulmányok Csatkai Endre emlékére, A Soproni Múzeum kiadványai 2, 431–443.
- Verő J 2001: Földön kívüli geofizika. Második rész. Az Akadémia Széchenyi István Geofizikai Obszervatóriuma Nagvcenken. *Természet Világa*, 132, 171–174
- Verő J 2002: Geofizikusok az Akadémián és az MTA Széchenyi István Geofizikai Obszervatóriuma. 591–599 Közgyűlési előadások 2001, II. eds. Beck M, Glatz F, Hámori J, Ritoók Zs, Magyar Tudományos Akadémia, 491–504.

Appendix – The 11th Scientific Assembly of IAGA

You are cordially invited to attend the IAGA 11th Scientific Assembly, to be held August 23-30, 2009 in Sopron, Hungary.

The Assembly will be held in the Liszt Ferenc Conference and Culture Centre (LFCCC) and nearby buildings (in the developing "Sopron Downtown Convention District"). LFCCC will serve as the headquarter (with the registration area, opening and closing ceremony, association lectures, and part of the sessions). The other part of the sessions and the poster presentations will be held in other buildings. All lecture and poster halls are within less than 5 minutes of each other on foot.

The scientific program of the meeting, which will cover all areas of IAGA science, will be defined by IAGA and its scientific bodies. It will be announced in the Second Circular, which will give all relevant information on how to submit an abstract and how to register for the meeting.

The scientific program starts on August 24 (Monday) and ends on August 29 (Saturday). The posters will be on show for six days, as well as the planned exhibition. About 600 oral presentations, 600 posters, and two association lectures are expected.

L. SZARKA

The poster of the Assembly (designed by Márton Juhász, University of West Hungary)

Local Organizing Committee (LOC)

L Szarka chairman (szarka@iaga2009sopron.hu), G Sátori deputy chairperson, V Wesztergom deputy chairman, M Tóth treasurer, A Varga technical organizer, J Bór, G Erdős, T Fleischhacker, G Hatos, B Heilig, J Lichtenberger, K Kis, Á Kis, J Kiss, A Koppán, K Kecskeméty, K Kovács, I Lemperger, D Martini, E Márton, A Novák, T Prodán, S Szalai, J Szendrői, M Tátrallyay, Z Vörös, B Zieger

Advisory Committee

A. Meskó, J. Ádám, A. Ádám, P. Bencze, Cs. Ferencz, L. Hegymegi, F. Märcz,
 P. Márton, K. Szegő, J. Verő, J. Závoti

LOC contact address

Diamond Congress Ltd., Attila Varga, H-1255 Budapest, POB 48, Hungary, Tel: +36 1 2147701, Fax: +36 1 2012680, www.iaga2009sopron.hu, e-mail: loc@iaga2009sopron.hu

I. OBSERVATORY REPORTS 2005–2006

1. DESCRIPTION OF THE OBSERVATORY

V. Wesztergom

Nagycenk Geophysical Observatory was founded in 1956–1957 and it has been operated since then by the Geodetic and Geophysical Institute of the Hungarian Academy of Sciences.

The observatory is situated about 10 km to E of the city Sopron and 60 km SE of Vienna, on the southern shore of lake Fertő. The observatory lies on thick conductive sediment preserving the site from far industrial noise and it is surrounded by the Fertő-Hanság National Park which helps to shelter the long term measurements from any change caused by nearby manmade activity.

The co-ordinates of the observatory

3-character IAGA code: \mathbf{NCK}

Geographic co-ordinates:

 φ = 47°38' (N) λ = 16°43' (E) Altitude = 153.70 m (magnetic house) McIllwain L = 1.9

Measurements and reports started in 1957 (International Geophysical Year) with earth current data. The potential differences are measured in N-S and E-W directions with electrode spacings of 500 m. Low polarization lead plate electrodes are buried about 2 m below the surface. Potential differences are recorded with 1 sec and 10 sec sampling rate.

Continuous observation of atmospheric electricity started in 1962. Slow variation (DC component of vertical atmospheric electric field) is measured between the ground and an electrode (at 1 m height) around which the potential is equalized by means of a radioactive collector. Potential gradient is recorded with 15 sec sampling rate.

The publication of point discharge data has been abandoned from the year 2002.

E – Entrance, 1 – Main building with staff hostel and electronic laboratory, 2 – Telluric instruments and office, 3 – Atmospheric electricity centre (laboratory of Schumann resonance, potential gradient, point discharge and radiovawe absorption measurements), 4 – Magnetic absolute house with four pillars, 5 – Underground magnetic variometer chambers, 6 – Proton magnetometer (DI/DD) hut, 7 – Computer centre (data loggers, server of local network, satellite transmitter) 8 – Ionosonde station, electric and mechanical workshop, 9 – Ionosonde D-antenna, 10 – Meteorological station, 11 – ELF induction coil chamber,

12 Ball antenna (Schumann resonance antenna), 13 - Potential gradient sensors

Continuous observation of geomagnetic elements with control of the absolute observations began in 1961. The observatory has belonged to the INTERMAG-NET co-operation since 1993. Data are transmitted via METEOSAT satellite and computer network to geomagnetic information nodes and made also available to the international research community on CD ROM.

The observatory is the northernmost station of the South European Ground Magnetometer Array (SEGMA). The SEGMA stations in Austria, in Hungary and in Italy are located between L = 1.56 and L = 1.88. All of them are equipped with high resolution CHIMAG magnetometer. The magnetic field vector is recorded with a nominal sampling rate of 16 Hz but on special occasions the station has the maximum sampling rates up to 64 Hz.

The early nineties are to be considered as a transition period in the observatory again. Schumann resonance measurements started in 1993, an ionosonde station type IPS 42 works since 1996, the new digital ionosonde (type VISRC-2 made by the Space Research Center of the Polish Academy of Sciences) is to be put in operation in 2007. A scientific meteorological station was installed in 1996. ELF-VLF (whistler) observations is going on since 2003. The meteorological station is based on a Campbell CR10X measurement and control modul, temperature, humidity, wind speed, wind direction, rainfall and radiation sensors.

2. GEOMAGNETISM

ELECTRIC ACTIVITY INDICES

The 3-hour electric activity indices T for the E_x and E_y component, have a linear scale with a step of 1.8 mV/Km. The range of values is 0 to 9.

Values in brackets mean extrapolated data, where the lacking intervals were substituted by the average of recorded intervals.

Times are given in UT.

A detailed description of the processing and compilation is found in the Report of the Observatory for 1966 in German and Ádám A, Verő J, Cz. Miletits J, Holló L, Wallner Á: The geophysical observatory near Nagycenk. I. Electromagnetic measurements and processing of data (*Acta Geod. Geoph. Mont. Hung.*, 16, 1981, 333).

See CD (data visualization: program Seenck.exe, menu item Tellurics/Indices; path: \Nckobs\Tell\Indices\).

Date	Т	Sum	Date	Т	Sun
050101	12233569	31	050211	22331145	2
050102	75543959	47	050212	21112120	1(
050103	44244642	30	050213	11110130	ł
050104	53348663	38	050214	11111112	!
050105	32343622	25	050215	10110011	ļ
050106	11111141	11	050216	31125524	2
050107	00027989	35	050217	11021115	1
050108	99743222	38	050218	95434922	3
050109	11060020	10	050219	11233322	1
050110	01121224	13	050220	32212445	2
050111	11211434	17	050221	21011001	
050112	38468796	51	050222	11011112	
050113	23324773	31	050223	10212011	
050114	22221187	25	050224	00222112	1
050115	43342731	27	050225	11233321	1
050116	22235534	26	050226	41233331	2
050117	43699999	58	050227	02223221	1
050118	99989799	69	050228	22241214	1
050119	99786623	50	050301	21331114	1
050120	14354962	34	050302	33252412	2
050121	52232999	41	050303	11111130	
050122	89334463	40	050304	10111011	
050123	33335824	31	050305	12222149	2
050124	21123431	17	050306	83455979	5
050125	10111121	8	050307	44565994	4
050126	10010020	4	050308	57442487	'4
050127	10111012	7	050309	34433485	3
050128	21111132	12	050310	54233421	2
050129	31233399	33	050311	22221102	1
050130	34353322	25	050312	10101102	
050131	32247641	29	050313	00011126	1
050201	30121100	8	050314	63224212	2
050202	01121441	14	050315	10111003	
050203	14221211	14	050316	00135112	1
050204	00122110	7	050317	22211611	1
050205	10111010	5	050318	01111255	1
050206	11221142	14	050319	52121001	1
050207	22337399	38	050320	01111010	
050208	45465796	46	050321	00132112	1
050209	36465456	39	050322	01111111	
050210	44567592	42	050323	00213131	1

Date	Т	Sum	-	Date	Т	Sum
050324	01113021	9	-	050504	11111021	8
050325	12333437	26		050505	01111110	6
050326	13344341	23		050506	10114311	12
050327	22344742	28		050507	11212067	20
)50328	12221121	12		050508	66399994	55
)50329	01111212	9		050509	33222124	19
50330	12211310	11		050510	22221112	13
50331	13202332	16		050511	11292364	28
0401	11212121	11		050512	13311335	20
0402	10111100	5		050513	53215631	26
0403	11111212	10		050514	11121110	8
0404	11254599	36		050515	99993478	58
0405	96445435	40		050516	69654611	38
0406	32222224	19		050517	24221812	22
60407	21212101	10		050518	21122111	11
3408	10111010	5		050519	13211122	13
09	11111111	8		050520	33978922	43
10	11111100	6		050521	23332392	27
.11	11111234	14		050522	61212111	15
12	33344298	36		050523	21102101	8
13	23554665	36		050524	01111012	7
4	43222332	21		050525	11111100	6
15	12213243	18		050526	01111000	4
16	21111121	10		050527	01112000	5
417	01111000	4		050528	13222433	20
418	11211312	12		050529	21262669	34
419	11112112	10		050530	54669999	57
120	24553231	25		050531	52346322	27
421	11101010	5		050601	32231101	13
422	31203121	13		050602	12111113	11
)423	11212431	15		050603	22111111	10
)424	22221121	13		050604	22215494	29
)425	22323111	15		050605	35332343	26
)426	11111020	7		050606	22211014	13
)427	00111000	3		050607	22222111	13
0428	00112011	6		050608	11111000	5
0429	01122239	20		050609	11612112	15
0430	52335448	34		050610	01111010	5
0501	33423362	26		050611	11111112	9
)502	32213311	16		050612	11454999	42
50503	22223120	14		050613	54623220	24

Date	Т	Sum	 Date	Т	Sum
050614	12112194	21	 050725	21101112	9
050615	66516521	32	050726	11100111	6
050616	12565953	36	050727	12113257	22
050617	43222222	19	050728	36325335	30
050618	11222110	10	050729	25334643	30
050619	11111201	8	050730	63212112	18
050620	11111100	6	050731	11122114	13
050621	01111011	6	050801	31333312	19
050622	22132114	16	050802	21243331	19
050623	66956592	48	050803	12211224	15
050624	22233102	15	050804	12211113	12
050625	25222423	22	050805	11111233	13
050626	13222111	13	050806	24334462	28
050627	10011021	6	050807	43242133	22
050628	11211101	8	050808	11102102	8
050629	11211110	8	050809	31212123	15
050630	12111112	10	050810	11334101	14
050701	22213555	25	050811	10112110	7
050702	54332233	25	050812	11101123	10
050703	22222212	15	050813	43474257	36
050704	11121102	9	050814	22221122	14
050705	11122002	9	050815	01112113	10
050706	11211101	8	050816	24425425	28
050707	12213312	15	050817	43423234	25
050708	11011111	7	050818	33433532	26
050709	22367475	36	050819	11212011	9
050710	35499679	52	050820	11212010	8
050711	64383371	35	050821	11212932	21
050712	47469411	36	050822	13325213	20
050713	16455725	35	050823	21212121	12
050714	12312101	11	050824	23999997	57
050715	01112121	9	050825	44224852	31
050716	33111423	18	050826	21211112	11
050717	22353739	34	050827	21111001	7
050718	36513126	27	050828	11121112	10
050719	21211113	12	050829	21111100	7
050720	22366451	29	050830	00111031	7
050721	67522332	30	050831	12326997	39
050722	33223432	22	050901	43221013	16
050723	12211201	10	050902	21234998	38
050724	00112111	7	050903	94534113	-30

Date	Т	Sum	 Date	Т	Sum
050904	44445315	30	 051015	01121001	6
050905	41112242	17	051016	01121113	10
050906	31112101	10	051017	23234311	19
050907	22111110	9	051018	01111210	7
050908	11111121	9	051019	11112111	9
050909	12139344	27	051020	10111001	5
050910	24653889	45	051021	00111003	6
050911	99979997	68	051022	81111011	14
050912	34976999	56	051023	10111100	5
050913	94379063	41	051024	01111121	8
050914	21324451	22	051025	43132554	27
050915	21799974	48	051026	11112442	16
050916	32335152	24	051027	31144610	20
050917	12214542	21	051028	10111131	9
050918	11322111	12	051029	00111120	6
050919	11111110	7	051030	01121021	8
050920	01111110	6	051031	02113595	26
050921	11111000	5	051101	31121314	16
050922	11112220	10	051102	11111054	14
050923	21211011	9	051103	45664364	38
050924	10101000	3	051104	34432462	28
050925	10132001	8	051105	22322225	20
050926	42322144	22	051106	62342533	28
050927	41112115	16	051107	31222111	13
050928	21222522	18	051108	11111111	8
050929	32221211	14	051109	10110011	5
050930	01124224	16	051110	00210011	5
051001	22211154	18	051111	03111211	10
051002	42312413	20	051112	12112322	14
051003	21111021	9	051113	13122214	16
051004	21111010	7	051114	22112112	12
051005	11111011	7	051115	00111021	6
051006	11111110	7	051116	00000111	3
051007	21122135	17	051117	00110000	2
051008	87757194	48	051118	00000210	3
051009	21332033	17	051119	10001343	12
051010	32232112	16	051120	14411212	16
051011	41112221	14	051121	11121111	9
051012	00111001	4	051122	10111213	10
051013	10121131	10	051123	21711111	15
051014	01121001	6	051124	11121235	16

Date	Т	Sum
051125	31211212	13
051126	10111101	6
051127	00100111	4
051128	00113222	11
051129	10111117	13
051130	42255122	23
051201	33233233	22
051202	32433133	22
051203	43222433	23
051204	11112131	11
051205	11121110	8
051212	23222253	21
051207	00000000	0
051208	00000011	2
051209	00001117	10
051210	33201143	17
051211	31122994	31
051212	23222153	20
051213	11011031	8
051214	01111001	5
051215	11100001	4
051216	13111210	10
051217	00011100	3
051218	10011001	4
051219	11221283	20
051220	31113352	19
051221	11222412	15
051222	21111011	8
051223	10000000	1
051224	00011111	5
051225	11112100	7
051226	00011135	11
051227	51112389	30
051228	33345336	30
051229	33342312	21
051230	22121212	13
051231	31112333	17

Date	Т	Sum	Date	Т	Sum
060101	21013212	12	060211	11101210	7
060102	12121214	14	060212	32111100	9
060103	10011210	6	060213	10000111	4
060104	00010010	2	060214	00000000	0
060105	00011111	5	060215	01422144	18
060106	12111111	9	060216	34411111	16
060107	21111200	8	060217	11111112	9
060108	00100101	3	060218	00011001	3
060109	01110100	4	060219	31111131	12
060110	00000000	0	060220	22239749	38
060111	11111010	6	060221	63235513	28
060112	21100000	4	060222	42222622	22
060113	00010111	4	060223	111111111	8
060114	10001020	4	060224	21111100	7
060115	20010131	8	060225	21110000	5
060116	12243555	27	060226	11111213	11
060117	43112111	14	060227	10111012	7
060118	21121312	13	060228	00210113	8
060119	11111113	10	060301	51123101	14
060120	11111320	10	060302	00111001	4
060121	22011001	7	060303	01111120	7
060122	00111101	5	060304	11120001	6
060123	13635234	27	060305	10011101	5
060124	21211100	8	060306	10133244	18
060125	11211145	16	060307	41111110	10
060126	34133998	40	060308	11012121	9
060127	32143331	20	060309	01009141	16
060128	11111031	9	060310	11222329	22
060129	10111001	5	060311	42221211	15
060130	10001000	2	060312	01121120	8
060131	00001100	2	060313	01101011	5
060201	01011001	4	060314	00122103	9
060202	00111111	6	060315	21322340	17
060203	10011031	7	060316	11211211	10
060204	32111100	9	060317	01111111	7
060205	01111010	5	060318	01553779	37
060206	23123135	20	060319	95443373	38
060207	11000112	6	060320	33442263	27
060208	11110000	4	060321	12212952	24
060209	01110011	5	060322	22111132	13
060210	00020023	7	060323	11211002	8

Date	Т	Sum	-	Date	Т	Sum
060324	10111123	10	-	060504	11216342	20
060325	11111130	9		060505	31111101	9
060326	01122252	15		060506	11112745	22
060327	32111213	14		060507	33444132	24
060328	02111121	9		060508	22221001	10
060329	11111014	10		060509	01111101	6
060330	00111012	6		060510	01111133	11
060331	10122130	10		060511	23335234	25
060401	01111101	6		060512	42324222	21
060402	00112112	8		060513	31222133	17
060403	00012101	5		060514	33311111	14
060404	01221145	16		060515	11111012	8
060405	34139251	28		060516	01111100	5
060406	11122112	11		060517	11012101	7
060407	00101000	2		060518	11122641	18
060408	10121012	8		060519	12211132	13
060409	94524369	42		060520	11111111	8
060410	44422321	22		060521	21111131	11
060411	11111101	7		060522	31111114	13
060412	11111000	5		060523	31211000	8
060413	21235523	23		060524	01112100	6
060414	39864943	46		060525	15211013	14
060415	31232993	32		060526	01101110	5
060416	22233221	17		060527	11101001	5
060417	10111134	12		060528	12211011	9
060418	42111102	12		060529	01101001	4
060419	10011001	4		060530	00023321	11
060420	01153100	11		060531	21112111	10
060421	10123401	12		060601	12221322	15
060422	73333110	21		060602	22111111	10
060423	12211103	11		060603	11213201	11
060424	31121002	10		060604	01110000	3
060425	21111000	6		060605	11111110	7
060426	11111100	6		060606	11564374	31
060427	11113111	10		060607	44434336	31
060428	22522011	15		060608	43344432	27
060429	10010001	3		060609	32232221	17
060430	64010000	11		060610	11213221	13
060501	01110000	3		060611	11111102	8
060502	21101111	8		060612	10111201	7
060503	01101011	5		060613	01101111	6

Date	Т	Sum	Date	Т	Sum
060614	11111124	12	060725	22201112	11
060615	34443323	26	060726	21111100	7
060616	22212131	14	060727	11104334	17
060617	12312210	12	060728	96632211	30
060618	11325101	14	060729	10111111	7
060619	12100000	4	060730	13111101	9
060620	21111110	8	060731	12355212	21
060621	00101111	5	060801	23332311	18
060622	12111120	9	060802	22221113	14
060623	01100000	2	060803	22111013	11
060624	01102110	6	060804	01100000	2
060625	11111101	7	060805	11110000	4
060626	00111011	5	060806	01111101	6
060627	11111192	17	060807	45665952	42
060628	34223133	21	060808	22323220	16
060629	23922333	27	060809	23122013	14
060630	12322211	14	060810	11101012	7
060701	11101010	5	060811	12312111	12
060702	00100010	2	060812	12111110	8
060703	11111001	6	060813	00101111	5
060704	01115335	19	060814	00111010	4
060705	66622123	28	060815	01111111	7
060706	32221121	14	060816	11113111	10
060707	11222211	12	060817	01412123	14
060708	20101010	5	060818	23222423	20
060709	00000117	9	060819	21159689	41
060710	22122221	14	060820	69312212	26
060711	00113332	13	060821	11211237	18
060712	22254221	20	060822	51224621	23
060713	22211001	9	060823	11101001	5
060714	12134522	20	060824	20101212	9
060715	01111101	6	060825	00111010	4
060716	01101000	3	060826	00111121	7
060717	11101010	5	060827	21246553	28
060718	01011010	4	060828	42222312	18
060719	11000010	3	060829	31222121	14
060720	11101001	5	060830	11222231	14
060721	10101010	4	060831	11312234	17
060722	11111101	7	060901	41223466	28
060723	11110001	5	060902	21122122	13
060724	01211102	8	060903	11111112	9

Date	Т	Sum	-	Date	Т	Sum
060904	78432222	30	_	061015	11223241	16
060905	11122431	15		061016	11121123	12
060906	11212030	10		061017	00011101	4
060907	11212310	11		061018	10100010	3
060908	11211111	9		061019	01121000	5
060909	11201000	5		061020	11523333	21
060910	00211111	7		061021	44243972	35
060911	22222100	11		061022	22222252	19
060912	20121120	9		061023	10221112	10
060913	02211000	6		061024	10122021	9
060914	11111100	6		061025	11111100	6
060915	10101000	3		061026	11111000	5
060916	10021110	6		061027	10111022	8
060917	10122182	17		061028	11122348	22
060918	62324475	33		061029	34332459	33
060919	21422111	14		061030	42321211	16
060920	11210110	7		061031	10111112	8
060921	00111011	5		061101	11112212	11
060922	00111011	5		061102	10111241	11
060923	00011137	13		061103	10132110	9
060924	76355224	34		061104	22111121	11
060925	21132112	13		061105	00111100	4
060926	11221112	11		061106	00011011	4
060927	21111100	7		061107	00011000	2
060928	00111011	5		061108	10011000	3
060929	10001120	5		061109	10011557	20
060930	12542312	20		061110	55364292	36
061001	75233411	26		061111	54344945	38
061002	11111122	10		061112	22122101	11
061003	11214102	12		061113	01111000	4
061004	10111310	8		061114	00111212	8
061005	10111021	7		061115	12111112	10
061006	00211001	5		061116	51110000	8
061007	10112524	16		061117	21011100	6
061008	21121111	10		061118	00011000	2
061009	11121011	8		061119	11120001	6
061010	11110000	4		061120	00111000	3
061011	11111000	5		061121	10111000	4
061012	10112102	8		061122	00043222	13
061013	11242299	30		061123	11422455	24
061014	52242867	36		061124	23323122	18

Date	Т	Sum
061125	21232994	32
061126	32132264	23
061127	21233341	19
061128	11112211	10
061129	24111011	11
061130	22369711	31
061201	11011131	9
061202	00001011	3
061203	10111011	6
061204	00000010	1
061205	00041102	8
061206	43344394	34
061207	64335725	35
061208	39773373	42
061209	12110334	15
061210	13226734	28
061211	23221116	18
061212	36328574	38
061213	22111012	10
061214	32129999	44
061215	99699896	65
061216	22121443	19
061217	21211130	11
061218	11021427	18
061219	22223121	15
061220	52326698	41
061221	53344622	29
061222	43232333	23
061223	21423422	20
061224	21213542	20
061225	31322211	15
061226	10212110	8
061227	00000101	2
061228	10000031	5
061229	20000110	4
061230	00010111	4
061231	00000001	1

MAGNETIC MEASUREMENTS AND DATA PROCESSING

V. WESZTERGOM

Recording of geomagnetic variations

Geomagnetic variations are recorded by the ARGOS system. ARGOS (developed by the Geomagnetism Group of British Geological Survey) is a PC based automatic observatory equipped with triaxial fluxgate and a proton magnetometer in a DD/DI configuration. The fluxgate variometer sensors are aligned in X, Y, Z directions. 10 second samples are used to provide minute values centred on the minute by means of a 7-point cosine filter. Reported elements are: H (horizontal), Z (vertical), D (declination) and F (total force). From the year 1993 on the minute values are transmitted through the METEOSAT satellite to the Edinburgh Geomagnetic Information Node.

Device	Resolution	Dynamic range	Temperature coeff.
Triaxial Fluxgate			
Magnetometer	0.1 nT	± 500 nT/ ± 400 nT	$\sim 1 \text{ nT/°C}$
Proton Magnetometer			
(ELSEC 820)	0.1 nT	10000-90000 nT	-

Table I. Main specifications of ARGOS used in Nagvcenk Observatory

DI/DD coil system consists of two orthogonal sets of Helmholtz coils (proton head is mounted at the centre). Coils orientated so that one provides bias fields approximately perpendicular to F vector in the magnetic meridian and the other provides bias fields approximately perpendicular to F in the horizontal plane. DD and DI relative to the initial values (D0. I0) are calculated. DD/DI proton magnetometer is used in every tenth minutes from which F and almost absolute values of D an I are obtained.

Satellite transmitter, 6800 Series of Data Collection Platform, was supplied by Space Technology Systems. Power output to antenna (two linearly-polarised Yagi arranged to give circular polarisation) is 4 watts at 402 MHz. Data storage capacity is 2×40 kbytes. Timing is produced by the IBM clock corrected by the high stability crystal built in the Proton Magnetometer.

To ensure continuous recording a high stability torsion photoelectric magnetometer (type PSM-8711) has been run from 1 January 1998. Data along with telluric data are logged by a DR-02 type digital recording system. The PSM magnetometer records the H, D and Z component with an exceptionally high parameter stability. The baseline variation has never exceeded 1.5 nT/year. Maximum resolution is 3 pT, sampling rate applied is 10 s. Frequency response: 0.3 Hz to DC. Sensitivity to tilting: less than 10 nT/'.

Data are stored in the internal memory of the digital data logger DR-02. Both the PSM and the DR-02 was developed and provided by the Institute of Geophysics Polish Academy of Sciences.

Absolute control, baselines

Baselines of the variometer systems are derived from absolute observations. Prior to 1989 the baseline was controlled by two QHM, one declinometer and one BMZ. From 1989 till the end of 1994 the standard instrument for absolute measurements was the vector proton magnetometer (NVP) constructed in Niemegk Observatory. In 1994 an Overhauser proton magnetometer (type: GSM 19 of GEM Systems) and a fluxgate theodolite (developed by the Danish Meteorological Institute) was purchased. Since then the standard instruments are the fluxgate theodolite for I and D and the Overhauser effect proton magnetometer for F.

To determine the momentary angle of declination four observations (four null positions in the horizontal plane) are taken and it is repeated at least two times. Generally the closer azimuth mark is used but it is checked regularly with the far azimuth mark. Inclination angle is determined in the plain of the momentary magnetic meridian in the same way as D. Total intensity is measured simultaneously with I-measurements on the next (F) pillar with the Overhauser magnetometer. Absolute values of all geomagnetic elements are referred to the same pillar of the absolute hut. Observation is made weekly, occasionally more often.

Absolute measurements are supplemented by quasi absolute baseline reference measurements. Declination, inclination and total intensity are determined by means of a proton vector magnetometer in every ten minutes.

28

MAGNETIC MEASUREMENTS

Data processing and availability

Sampling rate of magnetic variation data is 10s both for ARGOS and PSM. Minute mean values are produced with digital filter from the raw sampled data. According to the IAGA recommendation minute mean values are stored. Hourly means are calculated from minute means, yearly means are derived from hourly means. Final absolute values of H, D and Z field component are obtained from smoothed baselines.

ARGOS data are compared continuously to PSM data and gaps are filled.

Data are logged on floppy disk too. In addition to logging data to disk INTER-MAGNET V2.8 format satellite transmission packets are sent to DCP.

Presentation of the results

- plot of hourly mean values of H, D, Z
- plot of daily mean values of H, D, Z
- tables of geomagnetic activity indices, K
- table of annual mean values of geomagnetic elements
- special phenomena: SSC, sfe

See CD (data visualization: program Seenck.exe, menu item Magnetics; path: \Nckobs\Magn\).

GEOMAGNETIC DATA

Hourly mean values of H, D, Z and F

Hourly means are derived from minute means corrected using absolute observations. The units of the elements are 0.1 nT, Declination is also scaled to 0.1 nT. Minute means of F are calculated from H and Z. F values are checked by comparing them with proton magnetometer readings taken at every 10 minutes.

Daily mean values of H, D, Z and F

Daily mean values are calculated from hourly mean values.

Geomagnetic activity indices: K-index

The K-index is determined from the amplitude ranges of H and D components for each three-hour Universal Time interval. Limit for K=9 is 350 nT in Nagycenk.

Special phenomena

List of special events is based on both magnetic and earth current records. Tables are given for SSC-s and sfe.

Annual mean values of geomagnetic elements

Table contains yearly means of the geomagnetic elements 1961 to 1993 in nT. These values are the results of a reevaluation of previously published data, including corrections eliminating disturbances caused by construction works in the observatory. Corrected values are noted by asterisk.

Times in this section are given in UT!

See CD (data visualization: program Seenck.exe, menu item Magnetics; path: \Nckobs\Magn\).

Hourly mean values of H, D, Z 2005-2006

HOURLY MEAN VALUES OF H, D, Z, MAR-APR 2005

HOURLY MEAN VALUES OF H, D, Z, JUL-AUG 2005

HOURLY MEAN VALUES OF H, D, Z, MAR-APR 2006

Daily mean values of H, D, Z 2005-2006

DAILY MEAN VALUES 2005

DAILY MEAN VALUES 2006

Hourly mean values of H, D, Z 2005-2006 ,

Date	K	Sum	Date	К	Sum
050101	13323455	26	050211	22232144	20
050102	55533646	37	050212	22000120	7
050103	34234542	27	050213	11100130	7
050104	53236643	32	050214	12111123	12
050105	32334434	26	050215	11110012	7
050106	11000141	8	050216	31124444	23
050107	00026658	27	050217	21021114	12
050108	76333222	28	050218	64433522	29
050109	10040010	6	050219	21233433	21
050110	12021333	15	050220	43311444	24
050111	22321535	23	050221	31011002	8
050112	35345554	34	050222	11001222	9
050113	32222444	23	050223	20211021	9
050114	21221266	22	050224	00223122	12
050115	32333531	23	050225	01332432	18
050116	32223334	22	050226	31221331	16
050117	43356655	37	050227	03323121	15
050118	65656566	45	050228	12233214	18
050119	55644513	33	050301	21231124	16
050120	12333643	25	050302	43332422	23
050121	31221787	31	050303	11101231	10
050122	55424353	31	050304	10011010	4
050123	32333534	26	050305	11212245	18
050124	31123422	18	050306	52344556	34
050125	10011031	7	050307	33443664	33
050126	10010020	4	050308	45323455	31
050127	00110022	6	050309	34333455	30
050128	21110143	13	050310	43333432	25
050129	42344465	32	050311	22121002	10
050130	34333322	23	050312	10100003	5
050131	52226541	27	050313	00021134	11
050201	31010201	8	050314	54325223	26
050202	12121450	16	050315	21111003	9
050203	14310211	13	050316	00023223	12
050204	00011221	7	050317	23222522	20
050205	00111010	4	050318	01011254	14
050206	02221043	14	050319	42121002	12
050207	33335465	32	050320	01100000	2
050208	35333555	32	050321	00122212	10
050209	44444444	32	050322	00011112	6
050210	43335453	30	050323	00002131	7

Date	K	Sum	Date	K	Sum
050324	10003131	9	050504	22010021	8
50325	23323435	25	050505	01011300	6
0326	13333332	21	050506	10023322	13
50327	22234542	24	050507	21103145	17
50328	11110022	8	050508	55457765	44
50329	00000113	5	050509	32221234	19
50330	22211311	13	050510	23222123	17
50331	13201443	18	050511	10122354	18
50401	11211021	9	050512	24312344	23
0402	10011200	5	050513	53323532	26
50403	32000223	12	050514	21121120	10
50404	11233566	27	050515	67754567	47
)50405	65344445	35	050516	55445422	31
)50406	42122424	21	050517	24322523	23
)50407	31223100	12	050518	32222211	15
50408	30001020	6	050519	12322132	16
50409	10000102	4	050520	34554433	31
50410	10001000	2	050521	23333352	24
50411	01001345	14	050522	42222211	16
50412	44334365	32	050523	20102211	9
50413	33444645	33	050524	10001013	6
50414	23223343	22	050525	12010200	6
50415	22213344	21	050526	00000000	0
50416	31101122	11	050527	00012000	3
)50417	12101011	7	050528	02223544	22
)50418	21211213	13	050529	32232336	24
)50419	21312112	13	050530	53556666	42
)50420	34453341	27	050531	34344333	27
)50421	10101021	6	050601	42122221	16
050422	21103132	13	050602	13111224	15
050423	11111331	12	050603	22121221	13
)50424	22221232	16	050604	23124554	26
)50425	22222112	14	050605	43332443	26
)50426	10000021	4	050606	32201114	14
)50427	00011000	2	050607	33213222	18
050428	00001120	4	050608	21101000	5
)50429	11222235	18	050609	01011121	7
)50430	43334435	29	050610	00000100	1
50501	34334443	28	050611	10111123	10
)50502	32113222	16	050612	12445666	34
050503	32123231	17	050613	54334331	26

Date	K	Sum	Date	K	Sum
050614	12112054	16	050725	11000103	6
50615	44524432	28	050726	11000122	7
50616	02355543	27	050727	23213354	23
50617	43123232	20	050728	35234334	27
50618	22212221	14	050729	23334534	27
50619	21012302	11	050730	43312022	17
50620	10020200	5	050731	12223114	16
50621	00100001	2	050801	41353433	26
50622	22132113	15	050802	22243330	19
50623	44655552	36	050803	13212334	19
50624	43232002	16	050804	22222123	16
50625	33222433	22	050805	20011333	13
050626	23122221	15	050806	44454454	34
050627	10001132	8	050807	43342234	25
050628	22111112	11	050808	21003212	11
050629	11211101	8	050809	32111233	16
)50630	22212322	16	050810	21434211	18
050701	32223544	25	050811	10002120	6
)50702	42232344	24	050812	01000124	8
50703	32222212	16	050813	43243255	28
50704	11021103	9	050814	22221122	14
50705	00222101	8	050815	00022324	13
50706	00101112	6	050816	23234334	24
50707	02212313	14	050817	43223334	24
050708	11111211	9	050818	22332433	22
050709	22245555	30	050819	20022021	9
050710	35465466	39	050820	10001020	4
050711	34333352	26	050821	11012533	16
050712	55355321	29	050822	23112213	15
050713	23555534	32	050823	21122321	14
050714	13222201	13	050824	34686554	41
050715	10002222	9	050825	43224543	27
050716	33212323	19	050826	32200112	11
050717	33353435	29	050827	31010001	6
050718	44323124	23	050828	21010022	8
050719	32111223	15	050829	43220100	12
050720	32244452	26	050830	00000042	6
050721	55432333	28	050831	22325655	30
)50722	33123442	22	050901	44224123	22
)50723	21100312	10	050902	32434675	34
050724	00022222	10	050903	54444224	29

Date	К	Sum	Date	K	Sum
050904	44344323	27	051015	00000011	2
50905	52232342	23	051016	11122324	16
0906	31122322	16	051017	24224310	18
50907	32120210	11	051018	02112330	12
)908	21101222	11	051019	13112222	14
0909	02145543	24	051020	20110001	5
0910	23334655	31	051021	00010003	4
0911	66657555	45	051022	42111010	10
0912	44665667	44	051023	10101100	4
0913	64355054	32	051024	11001232	10
0914	33335442	27	051025	44142434	26
0915	31456654	34	051026	21202552	19
50916	32234142	21	051027	30022530	15
50917	10123333	16	051028	10022232	12
50918	22232121	15	051029	00110231	8
0919	31112221	13	051030	12020132	11
920	01121020	7	051031	12213564	24
0921	20011001	5	051101	32122524	21
922	12112221	12	051102	11121154	16
923	32312022	15	051103	34343454	30
)924	10001101	4	051104	33332342	23
925	10132102	10	051105	23322323	20
926	42223244	23	051106	42223534	25
927	43222224	21	051107	31121222	14
0928	22323523	22	051108	10110021	6
50929	32121321	15	051109	20010101	5
0930	11124224	17	051110	00200011	4
1001	33321244	22	051111	12010321	10
1002	43312413	21	051112	23123433	21
1003	32220022	13	051113	33123324	21
51004	20020020	6	051114	33122022	15
51005	10010021	5	051115	10111001	5
51006	10001000	2	051116	00000212	5
51007	20022235	16	051117	00200000	2
1008	44443254	30	051118	00001321	7
51009	32122043	17	051119	11001554	17
51010	21331113	15	051120	13321213	16
51011	41012223	15	051121	12010011	6
51012	01000001	2	051122	20212323	15
51013	11011031	8	051123	22212222	15
51014	11110000	4	051124	22132344	21

Date	K	Sum
051125	41321332	19
051126	31020201	9
051127	00000012	3
051128	00113233	13
051129	10100225	11
051130	32233124	20
051201	42222344	23
051202	33333244	25
051203	42123443	23
051204	10022232	12
051205	10010010	3
051206	00000101	2
051207	00000000	0
051208	00000022	4
051209	10001125	10
051210	34311244	22
051211	32133554	26
051212	33222343	22
051213	12113031	12
051214	00100011	3
051215	10010000	2
051216	13121331	15
051217	00011200	4
051218	10011002	5
051219	11112354	18
051220	42223353	24
051221	11223423	18
051222	31010011	7
051223	10000000	1
051224	00022222	10
051225	22122201	12
051226	00011234	11
051227	31012556	23
051228	32233345	25
051229	43322323	22
051230	33220323	18
051231	32213334	21

Date	K	Sum	-	Date	K	Sum
060101	21013222	13	-	060211	11111310	9
060102	23220223	16		060212	33111200	11
060103	20000320	7		060213	00000211	4
060104	01010020	4		060214	00000000	0
060105	00011012	5		060215	01221144	15
060106	32112222	15		060216	32211122	14
060107	21111301	10		060217	12111002	8
060108	00111101	5		060218	00001011	3
060109	00000000	0		060219	21111132	12
060110	00000000	0		060220	22235544	27
060111	00021211	7		060221	33244444	28
060112	20100010	4		060222	43332422	23
060113	10011212	8		060223	11111012	8
060114	00012131	8		060224	31121000	8
060115	32011332	15		060225	20100000	3
060116	02233554	24		060226	12012223	13
)60117	23222121	15		060227	10001013	6
60118	32341323	21		060228	00021123	9
60119	10121224	13		060301	42123100	13
60120	21012442	16		060302	00000011	2
60121	12022000	7		060303	10000120	4
60122	00123311	11		060304	11010002	5
60123	23344334	26		060305	00000001	1
60124	32221101	12		060306	00012244	13
)60125	10101244	13		060307	32311031	14
)60126	44133646	31		060308	10002032	8
060127	32123233	19		060309	11000132	8
60128	21011033	11		060310	12333325	22
060129	10100101	4		060311	32321212	16
060130	00000000	0		060312	00221230	10
060131	01001100	3		060313	00010010	2
)60201	00001002	3		060314	00021013	7
060202	10010122	7		060315	22333441	22
060203	00020141	8		060316	11122412	14
60204	33111100	10		060317	00000011	2
60205	10111021	7		060318	01344656	29
)60206	23114344	22		060319	65545354	37
060207	21000022	7		060320	44333355	30
60208	20010000	3		060321	23123544	24
)60209	00101022	6		060322	32211143	17
060210	10000034	8		060323	11100002	5

Date	К	Sum	 Date	К	S
060324	00011123	8	 060504	01225333	
060325	22100130	9	060505	43121101	
060326	10011343	13	060506	12013554	
060327	33101303	14	060507	33543332	
060328	02111122	10	060508	22111010	
060329	01011033	9	060509	00011102	
060330	10010033	8	060510	00001133	
060331	10111031	8	060511	33344344	:
060401	00000100	1	060512	33324223	
060402	00002001	3	060513	42123233	
060403	00000102	3	060514	32211222	
060404	00221245	16	060515	11001112	
060405	43336342	28	060516	00000000	
060406	12222122	14	060517	12012202	
060407	10100000	2	060518	21342542	
060408	20021022	9	060519	22222233	
060409	65433345	33	060520	21111221	
060410	33322332	21	060521	31020332	
060411	11001102	6	060522	32122324	
060412	00010110	3	060523	31101000	
060413	12133333	19	060524	01022200	
)60414	45444643	34	060525	03100023	
)60415	33344554	31	060526	01001100	
060416	32222332	19	060527	00000001	
060417	20101123	10	060528	11122111	
060418	42110212	13	060529	10001002	
060419	20001011	5	060530	10015332	
060420	01033210	10	060531	31112112	
060421	00022422	12	060601	23232332	
060422	43333321	22	060602	23321321	
060423	12211002	9	060603	21203211	
060424	32121002	11	060604	11012000	
060425	31011110	8	060605	11001211	
060426	10010110	4	060606	22454463	
060427	10111221	9	060607	43334445	
060428	31432111	16	060608	33433433	
060429	10010002	4	060609	42232332	
060430	00000000	0	060610	21113332	
060501	01110000	3	060611	22012112	
060502	10101012	6	060612	00012212	
060503	11100112	7	060613	10001001	

.

Date	K	Sum	Date	K	Sum
060614	20121334	16	060725	33202223	17
060615	33433333	25	060726	32022201	12
060616	22121242	16	060727	10013334	15
060617	23323330	19	060728	55432311	24
060618	01221212	11	060729	20001121	7
060619	21000000	3	060730	22100102	8
060620	20011110	6	060731	23345324	26
060621	00000101	2	060801	34334412	24
060622	11111120	8	060802	22233214	19
060623	01000100	2	060803	32011012	10
060624	00012221	8	060804	00000011	2
060625	20210101	7	060805	12000010	4
060626	00010000	1	060806	00111200	5
060627	10112323	13	060807	44454543	33
060628	33235233	24	060808	22323331	19
060629	32233333	22	060809	23133013	16
060630	12223321	16	060810	10001013	6
060701	12001010	5	060811	12222211	13
060702	00100201	4	060812	13112221	13
060703	02010222	9	060813	00000010	1
060704	12225444	24	060814	11000011	4
060705	44533333	28	060815	00020302	7
060706	43222222	19	060816	21012112	10
060707	11223332	17	060817	00322223	14
060708	00100001	2	060818	34332333	24
060709	01000014	6	060819	21036466	28
060710	32123432	20	060820	66212232	24
060711	01023333	15	060821	23112335	20
060712	33255222	24	060822	41544542	29
060713	23221012	13	060823	22311001	10
060714	22134433	22	060824	20002312	10
060715	12113101	10	060825	00000000	0
060716	01001101	4	060826	10001021	5
060717	10111121	8	060827	21133543	22
060718	00010110	3	060828	43222333	22
060719	10000001	2	060829	31232331	18
060720	12102111	9	060830	10112332	13
060721	11000010	3	060831	11312344	19
060722	12121103	11	060901	30333455	26
060723	21110112	9	060902	32122143	18
060724	22221313	16	060903	22112213	14

KSumDateK04 45432333 27061015 22232343 05 22132432 19061016100011330611012140100610170000110107 11313321 1506101811000020081011221210061019000200000920100000306102011323433101010112280610214323365311322211011206102223223344122012111190610231011010313122210008061024001210321412111101806102511010001510100000206102601011000160102120280610271100013317111342532006102811233445184333454290610294333335519223333222006103042241311202210011070610313000122321000110114061101111032222200010021406110230002343231000123512061103210331202455344233290611043212033225301431131606110600100002261212223316061107000000002731012008061101544643533015334423290611114333554			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Date	K	Sum
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50904	45432333	27
06 11012140 10 061017 00001101 07 11313321 15 061018 1100020 08 10112212 10 061019 00020000 09 20100000 3 061020 11323433 10 10101122 8 061021 43233653 11 32221101 12 061022 23223344 12 20121111 9 061023 10110103 13 12221000 8 061024 00121032 14 1211101 8 061025 11010100 15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 11134253 20 061028 11233445 18 4333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120322 25 30143113 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061110 43333544 02 10212232 13 061110 5	60905	22132432	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60906	11012140	10
08 10112212 10 061019 0002000 09 20100000 3 061020 11323433 10 10101122 8 061021 43233653 11 32221101 12 061022 23223344 12 20121111 9 061023 10110103 13 12221000 8 061024 00121032 14 12111101 8 061025 11010100 15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 1134253 20 061028 11233445 18 4333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061104 32120322 25 30143113 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061109 10001346 30 13442324 23 061110 54464353 01 55334423 29 061111 4333544 02 10212232 13 061112 322010033 06 0011002 7 061115 320	0907	11313321	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0908	10112212	10
10 10101122 8 061021 43233653 11 32221101 12 061022 23223344 12 20121111 9 061023 10110103 13 12221000 8 061024 00121032 14 12111101 8 061025 11010100 15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 11134253 20 061028 11233445 18 43333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061102 30002343 23 10001235 12 061104 321203322 24 55344233 29 061104 321203322 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061111 43333544 02 10212232 13 061112 322010033 06 00120001 4 061116 42110100 07 00002345 14 061116 42110100 08 31022122 13 061118	0909	20100000	3
11 32221101 12 061022 23223344 12 20121111 9 061023 10110103 13 12221000 8 061024 00121032 14 12111101 8 061025 11010100 15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 11134253 20 061028 11233445 18 43333454 29 061029 43333355 19 22333322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 0000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061111 43333544 02 10212232 13 061112 32222000 03 21224313 18 061113 10000000 04 0100320 6 061114 01011223 05 10011022 7 061115 32010033 06 00120001 4 061116 42110	0910	10101122	8
12201211119 061023 10110103 13122210008 061024 00121032 14121111018 061025 11010100 15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 11134253 20 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061106 00100002 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 3002230 10 061109 10001346 30 13442324 23 061111 43333544 02 10212232 13 061112 32222000 03 21224313 18 061113 1000000 04 0100320 6 061114 01011223 05 10011022 7 061115 32010033 06 0120001 4 061116 42110100 07 0002345 14 061117 22003100 </td <td>60911</td> <td>32221101</td> <td>12</td>	60911	32221101	12
13 12221000 8 061024 00121032 14 12111101 8 061025 11010100 15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 11134253 20 061029 43333355 19 22333322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061111 43333544 02 10212232 13 061113 10000000 03 21224313 18 061113 10000033 04 01000320 6 061114 01011223 05 10011022 7 061116 42110100 07 0002345 14 061116 42110100 08 31022122 13 061118 00000000 09 01010022 6 061119 2113	60912	20121111	9
14 12111101 8 061025 11010100 15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 11134253 20 061029 43333355 18 43333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061111 43333544 02 10212232 13 061113 10000000 03 21224313 18 061113 10000000 04 01000320 6 061114 01011223 05 10011022 7 061115 32010033 06 00120001 4 061116 42110100 07 0002345 14 061117 2003100 08 31022122 13 061118 00000	0913	12221000	8
15 10100000 2 061026 01011000 16 01021202 8 061027 11000133 17 11134253 20 061028 11233445 18 43333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 000000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061110 54464353 01 55334423 29 061111 43333544 02 10212232 13 061112 32222000 03 21224313 18 061113 10000000 04 01000320 6 061114 01011223 05 10011022 7 061115 32010033 06 00120001 4 061116 42110100 07 0002345 14 061117 22003100 08 31022122 13 061118 00	0914	12111101	8
16 01021202 8 061027 11000133 17 11134253 20 061028 11233445 18 43333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061110 54464353 01 55334423 29 061111 43333544 02 10212232 13 061112 32222000 03 21224313 18 061113 10000000 04 01000320 6 061114 01011223 05 10011022 7 061115 32010033 06 00120001 4 061116 42110100 07 0002345 14 061117 22003100 08 31022122 13 061118 00000000 09 01010022 6 061119 213	0915	10100000	2
171113425320 061028 11233445 18 43333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061111 43333544 02 10212232 13 061112 32222000 03 21224313 18 061113 10000000 04 01000320 6 061114 01011223 05 10011022 7 061115 32010033 06 00120001 4 061116 42110100 07 0002345 14 061117 2203100 08 31022122 13 061118 00000000 09 01010022 6 061119 21130001 10 21110011 7 061120 00032042 11 10011100 4 061123 1133344	60916	01021202	8
18 43333454 29 061029 43333355 19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061110 54464353 01 55334423 29 061111 43333544 02 10212232 13 061112 32222000 03 21224313 18 061113 10000000 04 0100320 6 061114 01011223 05 10011022 7 061115 32010033 06 00120001 4 061116 42110100 07 0002345 14 061117 22003100 08 31022122 13 061118 00000000 09 01010022 6 061119 21130001 10 21110011 7 061120 00032042 11	60917	11134253	20
19 2233322 20 061030 42241311 20 22100110 7 061031 30001223 21 00011011 4 061101 11103222 22 00010021 4 061102 30002343 23 10001235 12 061103 21033120 24 55344233 29 061104 32120332 25 30143113 16 061105 00112210 26 12122233 16 061106 00100002 27 31011200 8 061107 00000000 28 20111113 10 061108 10000110 29 30002230 10 061109 10001346 30 13442324 23 061110 54464353 01 55334423 29 061111 43333544 02 10212232 13 061112 32222000 03 21224313 18 061113 10000000 04 0100320 6 061114 01011223 05 10011022 7 061115 32010033 06 00120001 4 061116 42110100 07 00002345 14 061117 22003100 08 31022122 13 061118 00000000 09 01010022 6 061119 21130001 10 21110011 7 061123 11333444 14 43242554 29 061124 3343332 <td>0918</td> <td>43333454</td> <td>29</td>	0918	43333454	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0919	223333322	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0920	22100110	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)921	00011011	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0922	00010021	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60923	10001235	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0924	55344233	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0925	30143113	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)926	12122233	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0927	31011200	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0928	20111113	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0020	30002230	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0930	13442324	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51001	55334423	29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1002	10212232	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1003	21224313	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51004	01000320	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1005	10011022	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1006	00120001	. 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	00002345	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1008	31022122	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1009	01010022	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1010	21110011	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1011	10011100	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1012	20011213	10
$14 43249554 90 \qquad 061124 32422229$	31013	22344466	31
	61014	4324255.4	29

Date	K	Sum
061125	32322453	24
061126	33223144	22
061127	21231331	16
061128	11122313	14
061129	23110112	11
061130	33446421	27
061201	00011242	10
061202	00001010	2
061203	12000121	7
061204	00000011	2
061205	00041112	9
061206	43344454	31
061207	54444534	33
061208	35443353	30
061209	21100434	15
061210	23234535	27
061211	33321035	20
061212	35325554	32
061213	33110013	12
061214	32225567	32
061215	87446554	43
061216	32121343	19
061217	20100130	7
061218	21021335	17
061219	23133323	20
061220	43324455	30
061221	53333433	27
061222	33433343	26
061223	22323542	23
061224	21123442	19
061225	32212311	15
061226	10202210	8
061227	00000000	0
061228	00000031	4
061229	10000110	3
061230	10020120	6
061231	10010101	4

Date	CET	Ampl.	Hx	Hy	Hz	Remark
	(UT+1h)	in H(nT)				
050121	1811	63	+	-	+	
050515	0333	90	+	-	-	
050614	1935	50	+	-	-	
050711	1206	29	+	-	_	
050717	0235	15	+	_	+	
050824	0957	53	+	_	_	
050902	1519	10	+	-	+	
050909	1501	36	+	-	+	
050911	0214	13	+	-	+	
060101	1504	17	+	-	-	?
060709	2235	33	+	_	+	
060727	1452	21	+	-	-	
060807	0129	24	+	-	+	
060818	0214	6	+	-	+	
060819	1231	22	+	-	+	
060904	0119	32	+	-	+	
061208	0533	31	+	-	+	
061214	1514	36	+	-	-	
061216	1853	28	+	-	+	

Special phenomena SSC-s 2005–2006

Date	Beginning	Maximum	End	Ampl.		Sign		
	GMT	GMT	GMT	nT	Hx	Hy	Hz	Remark
050606	0737	0744	0752	8	-		+	
051014	0927	0932	0935	5	_	+	-	
051021	1013	1017	1022	3	_	+	_	
051102	0804	0809	0814	5		+	_	
060127	1003	1007	1010	10	-	+	-	?
060323	0844	0850	0856	5	-	+	_	
060331	1040	1048	1103	7	-	+	-	
060703	0551	0556	0600	6	-	+	_	
060724	0837	0843	0847	8	-	+	+	
061122	1101	1105	1111	12	-	+	-	
061122	1336	1342	1348	13	-	+	+	
061125	0932	0936	0938	8	_	+	-	
061210	1141	1146	1151	8	-	+	+	

Special phenomena sfe 2005–2006

Annual	mean	values	of	geomagnetic	elements
--------	------	--------	----	-------------	----------

Year	D	Н	Z	I	Х	Y	F
		nT	nT		nT	nT	nT
1961	$-0^{\circ}23.6'$	20816	42077	63°40.7′	20816	-143	46944
1962	$-0^{\circ}19.6'$	20827	42093	63°40.5′	20827	-119	46964
1963	$-0^{\circ}14.3'$	20839	42116	$63^{\circ}40.4'$	20839	-87	46990
1964	$-0^{\circ}10.5'$	20845	42126	$63^{\circ}40.4'$	20845	-64	47001
1965	$-0^{\circ}08.1'$	20877	42137	$63^{\circ}38.6'$	20877	-49	47025
1966	$-0^{\circ}06.8'$	20888	42156	63°38.5′	20888	-41	47047
1967	$-0^{\circ}06.0'$	20903	42179	63°38.3′	20903	-36	47074
1968	$-0^{\circ}03.0'$	20921	42196	63°37.7′	20921	-18	47098
1969	$0^{\circ}00.2'$	20942	42214	63°36.9′	20942	1	47123
1970	$0^{\circ}02.8'$	20964	42235	$63^{\circ}36.1'$	20964	17	47152
1971	$0^{\circ}04.3'$	20992	42262	$63^{\circ}35.2'$	20992	26	47188
1972	0°06.5′	21011	42286	63°34.7′	21011	40	47218
1973	$0^{\circ}10.2'$	21028	42317	63°34.6′	21028	62	47254
1974	$0^{\circ}13.6'$	21046	42350	$63^{\circ}34.5'$	21046	83	47291
1975	$0^{\circ}18.5'$	21072	42380	63°33.8′	21072	113	47330
1976	$0^{\circ}23.8'$	21084	42413	63°34.0′	21084	146	47365
1977	$0^{\circ}28.8'$	21106	42443^{*}	63°33.6′*	21105	177	47401*
1978	$0^{\circ}34.6'$	21108	42473^{*}	63°34.4′*	21107	212	47429*
1979	$0^{\circ}41.4'$	21113^{*}	42496^{*}	63°34.8′*	21112*	254	47452*
1980	$0^{\circ}46.3'$	21107^{*}	42512^{*}	63°35.8′*	21105*	284	47463*
1981	$0^{\circ}52.4'$	21097^{*}	42530^{*}	63°37.0′*	21095^{*}	322	47475^{*}
1982	$0^{\circ}57.5'$	21078	42549	63°38.8′	21075	353	47484
1983	$1^{\circ}02.7'$	21078	42581	63°39.8′	21074	384	47512
1984	$1^{\circ}08.1'$	21075	42601	63°40.7′	21071	417	47529
1985	$1^{\circ}12.7'$	21073	42625	$63^{\circ}41.7'$	21068	446	47550
1986	1°17.8′	21065	42660	$63^{\circ}43.1'$	21060	477	47577
1987	$1^{\circ}21.9'$	21067	42689	$63^{\circ}44.0'$	21061	502	47604
1988	$1^{\circ}26.6'$	21052	42723	$63^{\circ}46.0'$	21045	530	47628
1989	$1^{\circ}31.3'$	21041	42761	$63^{\circ}48.0'$	21034	559	47657
1990	$1^{\circ}35.5'$	21044	42782	63°48.3′	21036	584	47678
1991	$1^{\circ}36.3'$	21027	42816	$63^{\circ}50.4'$	21019	589	47701
1992	$1^{\circ}38.1'$	21037	42834	$63^{\circ}50.4'$	21028	600	47721
1993	$1^{\circ}43.2'$	21039	42853	$63^{\circ}51.0'$	21030	631	47739
1994	$1^{\circ}48.4'$	21037	42877	$63^{\circ}52.0'$	21026	663	47760
1995	$1^{\circ}56.6'$	21052	42898	$63^{\circ}51.7'$	21039	713	47785
1996	$2^{\circ}02.0'$	21062	42920	$63^{\circ}51.7'$	21048	747	47809
1997	$2^{\circ}07.5'$	21060	42955	$63^{\circ}52.9'$	21045	781	47839
1998	$2^{\circ}13.7'$	21053	42997	63°54.7′	21037	819	47875
1999	$2^{\circ}18.3'$	21055	43030	$63^{\circ}55.6'$	21038	847	47905

ANNUAL MEANS OF GEOMAGNETIC ELEMENTS

Year	D	Н	Z	Ι	Х	Y	F
		nT	nT		nT	nT	nT
2000	$2^{\circ}23.7'$	21054	43068	63°56.9′	21035	880	47938
2001	$2^{\circ}28.4'$	21064	43099	$63^\circ 57.2'$	21045	909	47972
2002	$2^{\circ}33.7'$	21072	43136	$63^{\circ}57.9'$	21051	942	48008
2003	$2^{\circ}39.6'$	21071	43180	$63^{\circ}59.3'$	21048	978	48047
2004	$2^{\circ}44.4'$	21084	43208	$63^{\circ}59.4'$	21060	1008	48078
2005	$2^{\circ}49.2'$	21097	43240	$63^{\circ}59.5'$	21071	1038	48112
2006	$2^{\circ}57.0'$	21116	43261	$63^{\circ}59.0'$	21088	1087	48140

3. ATMOSPHERIC ELECTRICITY AND THE IONOSPHERE

ATMOSPHERIC ELECTRICITY DATA

Hourly means of the potential gradient

Atmospheric electricity data have been published since 1962. This table contains the hourly average values of the potential gradient expressed in V/m. The date column gives year, month, day (e.g. 990101 indicates 1999 January 1). Hourly averages have been taken only from hours having a recording period of 30 minutes or more. If values were available only for part of an hour the average is entered in square brackets []. These data have been used in the determination of the daily means. Values uncertain for some reason are entered in round brackets () and have not been used in calculating daily means. Daily means of each day with 24 hours of recording are entered. However, loss of a maximum of one hour's data out of twelve (for example, on account of instrument maintenance or calibration) has not precluded entering this mean value. In hours marked by S the value of the potential gradient exceeded permanently or several times the measuring limits of the equipment making the determination of an hourly average impossible. The direction of the deviations is marked by signs. OBS indicates that the potential gradient exceeded the measuring limits of the equipment both in positive and negative directions. Gaps of some days are generally due to missing records. Data are presented in universal time (GMT).

See CD (data visualization: program Seenck.exe, menu item AtmElectr/ Potgrad; path: \Nckobs\Atmelect\Potgrad\).

POTENTIAL GRADIENT 2005

POTENTIAL GRADIENT 2005

POTENTIAL GRADIENT 2005

POTENTIAL GRADIENT 2006

POTENTIAL GRADIENT 2006

SCHUMANN RESONANCE OBSERVATIONS

G. Sátori

Schumann resonances are the electromagnetic eigenmodes of the Earthionosphere cavity maintained by the world thunderstorm activity (Schumann 1952).

The first efforts were already made in sixties to record the variations of the natural electromagnetic energy source in the Schumann resonance (SR) frequency range. P Bencze constructed an equipment for measuring SR and reported on the first results together with A Ádám (Ádám and Bencze 1963).

The experiments were renewed in eighties to realize the continuous measurements of Schumann resonance frequencies and amplitudes. Since May of 1993, the vertical electric field component in SR frequency range between 2 and 25 Hz has regularly been measured in the Nagycenk Observatory (47.6°N, 16.7°E) using a very stable ball-antenna, a preamplifier with high input impedance and low noise, an amplifier and a personal computer with high speed, multi-channel AD-converter. The complex demodulation as a spectral technique has been applied for the quasicontinuous determination of the actual peak-frequencies and the corresponding amplitudes of the first three SR modes (Sátori et al. 1996).

Using convolution filters the phase-variations of the complex wave vector relating to the central period of the filters are determined. By computing the phase changes versus time the frequency (and the amplitude) can also be monitored in time. Using this spectral technique, the frequency can be determined within a given range of frequencies, in the case applied here in the frequency range of the first three Schumann-resonance modes, namely between 7–9 Hz, 13–15 Hz and 19–21 Hz. An alternate sampling and computation process yields a quasi real-time technique.

The horizontal magnetic field components (north-south and east-west) have regularly been measured since January of 1997 using induction coils. The spectral technique is the same as in case of the vertical electric field component.

The electronics of the SR recording system was developed by J Pongrácz and J Horváth, the ball-antenna was constructed by Gy Pálla.

Recording SR-transients started in the frame of US-Hungarian Joint Found (JF.554) in 1998. These events, so called Q-bursts, are excited by individual energetic lighning strokes.

The hourly averages of the peak-frequencies and the amplitudes for the first three modes and SR transients for selected time periods (international campaignes)

G. SÁTORI

are available (e-mail: satori@ggki.hu). Figure 1 shows Schumann resonance recording system with the ball-antenna for the measurement of the vertical electric field component, as well as the two induction coils for the horizontal north-south and east-west magnetic field components. Figure 2, as example, exhibits the daily frequency and amplitude variations of the first three modes characteristic for a winter month. Figure 3 depicts a SR-transient.

Some results based on SR observations

The observation of Schumann resonances is important from the point of view of the world thunderstorm activity in the troposphere, as well as the different emissions (red sprite, blue jet, elves) induced by lightning strokes and large scale influences of extraterrestrial origin in the lowest ionosphere.

The semiannual variations of SR amplitudes measured at the Nagycenk Observatory, Central Europe. are the manifestation of the semiannual variation of the surface air temperature in the tropical continental regions (Sátori and Zieger 1996). The latter is due to the semiannual wave of solar insolation with maxima at the equinoxes. The magnitude of the semiannual temperature variation is about 1.5–2.0 °C. The high significance level of the semiannual variation of the SR amplitudes at Nagycenk shows that the quality of this SR data set makes it suitable for detecting temperature variations at the level of some tenths of a degree centigrade. In this way, the observation of the SR amplitudes/intensities have great importance from the point of view of global climatic changes.

Parameters of global thunderstorm activity were deduced from the long term Schumann resonance records at Nagycenk (Nickolaenko et al. 1998).

The ENSO (El Niño Southern Oscillation) phenomenon is among others characterized by sea surface temperature anomaly in the equatorial Pacific which can affect weather patterns around the world. A meridional redistribution of the world thunderstorm activity was deduced from the variations of SR frequencies on the ENSO time scale observed at Nagycenk (Sátori and Zieger 1999).

Lightning properties of the two tropical continental chimneys, the Congo and Amazon basins were compared based on Schumann resonance measurements at Nagycenk, Hungary and Rhode Island, USA and satellite observations (Williams and Sátori 2004).

See CD (data visualization: program Seenck.exe, menu item SchumannRes: path: \Nckobs\Schumann\).

Schumann Resonance Recording System

Széchenyi István Geophysical Observatory Nagycenk (NCK, 47.6N, 16.7E), Hungary

SCHUMANN RESONANCE OBSERVATIONS

Fig. 2. Hourly means of SR frequencies in Ez (top) and relative amplitudes in V (bottom) measured for the first three modes in the days of December, 2002

SCHUMANN RESONANCE OBSERVATIONS

Fig. 3. SR-transient recorded at Nagycenk. Time markers include intervals of 100 ms. The horizontal broken lines indicate the trigger level of ± 0.6 V

References

- Ádám A, Bencze P 1963: Study of naturalenergy sources in the low frequency band (in Hungarian). *Magyar Geofizika*, 4, 29–35.
- Nickolaenko A P, Sátori G, Zieger B, Rabinowicz L M, Kudintseva I G 1998: Parameters of global thunderstorm activity deduced from the long term Schumann resonance records. J. Atmos. Sol. Terr. Phys., 60, No. 3, 387–399.
- Sátori G, Zieger B 1996: Spectral characteristics of Schumann resonances observed in Central Europe. J. Geophys. Res., 101, No. D23, 29663–29669.

- Sátori G, Zieger B 1999: El Niño related meridional oscillation of global lightning activity. *Geophys. Res. Lett.*, 26, NO 10, 1365–1368.
- Sátori G, Szendrői J, Verő J 1996: Monitoring Schumann Resonances I. Methodology. J. Atmos. Terr. Phys., 58, No. 13, 1475-1481.
- Schumann O W 1952: Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Duftschicht und einer Ionosphärenhülle umgeben ist. Z. Naturforsch., 7a, 149–154.
- Williams E R. Sátori G 2004: Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Sol. Terr. Phys., 66, 1213–1231.

4. METEOROLOGICAL OBSERVATIONS

2005-2006

METEOROLOGICAL OBSERVATIONS 2005

METEOROLOGICAL OBSERVATIONS 2005

METEOROLOGICAL OBSERVATIONS 2006

II. LATEST STUDIES

LIGHTNING INDUCED SCHUMANN RESONANCE TRANSIENTS AND SPRITES

J. BÓR and G. SÁTORI

The results presented here is a contribution to the EUROSPRITE2003 campaign (Neubert et al. 2005) based on the observations of Schumann resonance transients recorded at the Széchenyi István Geophysical Observatory at Nagycenk.

Electromagnetic waves radiated by a lightning discharge in the lowest band of the ELF (Extremely Low Frequency: 3 Hz-3 kHz) range can excite the earthionosphere cavity. The resonance frequencies, known as Schumann resonances (SR) (Schumann 1952), are determined by the effective circumference of the earth and the phase speed of electromagnetic waves in the earth-ionosphere waveguide. The fundamental resonant frequency is close to 8 Hz, with higher-order modes spaced at intervals of about 6 Hz. Schumann resonance observations started in the Széchenyi István Geophysical Observatory at Nagycenk in 1993 (Sátori et al. 1996). Energetic lightning discharges excite the cavity, and the pulsed discrete variations, lasting for a fraction of a second, appear as coherent signals in the vertical electric and horizontal magnetic field components superimposed on the background ELF noise.

The energetic and mainly positive cloud-to-ground discharges (+CG) are very often accompanied by transient luminous events (TLEs) occurring between the top of the thunderstorms and the lower ionosphere. One of the TLEs, known as sprite, occupies huge space with vertical extension of 30–60 km and diameter of 5–15 km. Their lifetime is only some tens milliseconds. This was the reason why they were discovered rather late in 1989, apart from anecdotal evidences for many years, and documented in scientific journal in 1990 (Frantz 1990).

The charge moment (CM) change of a discharge is the amount of charge times the distance it has been moved. This parameter has been shown to be more relevant in quantifying the ability of a lightning stroke to generate TLEs than the often measured peak current of a discharge (Huang et al. 1999).

From SR transients, one can estimate the CM change of a flash. SRs were detected during the TLE observation campaign in the frequency band 5-30 Hz

J. BÓR and G. SÁTORI

Fig. 1. a) Sprite on August 28, 2003 at 23:11:10.839 UT. b) SR transients recorded in the horizontal magnetic (HNS and HEW) and vertical electric EZ field components at Nagycenk, Hungary. The estimated charge moment change is about 2200 Ckm. The arrow and dashed line mark the time of sprite

at Nagycenk, Hungary. The CM changes associated with the +CGs that were identified for sprite events (a group of TLEs) were calculated by using one of the methods described by Huang et al. (1999), which assumes an exponential decay of the lightning current. Spectra of the SR field components depend on the sourceobserver distance, which is known from lightning detection networks. The ratio of the observed and theoretical spectra of each SR field component computed for the distance of the causative flash gives the current moment spectrum of the discharge. CM estimation is based on finding that exponential function for which the Fourier transform gives the best approximation of the current moment spectrum (Burke and Jones 1996, Huang et al. 1999). Theoretical spectra are calculated assuming

Fig. 2. a) Sprite generated by intracloud (IC) discharges on July 23, 2003 at 21:34:58.160 UT.b) SR transients recorded at Nagycenk, Hungary. Dashed line indicates the time of the sprite. The charge moment change is 800 Ckm computed from the SR transient following the sprite

a vertical dipole discharge approximation (Wait 1962), and EM wave propagation from the source to the observer in the earth-ionosphere waveguide with a perfectly conducting ground and an ionospheric conductivity that is isotropic and given by the mean of three conductivity profiles (Jones 1967). The method has been shown to give good correspondence between measured and observed spectra (Jones and Kemp 1970).

One example of a sprite over South-Eastern France on August 28 at 23:11:10.839 UT, and the SR transient from the causative +CG are shown in Fig. 1. The CM

J. BÓR and G. SÁTORI

Fig. 3. Histogram of charge moment (CM) changes deduced from 76 Schumann resonance (SR) transients recorded at Nagycenk, Hungary and excited by sprite producing parent strokes

change estimated for this event is 2200 Ckm. Another example of sprite generated by intracloud (IC) discharges on July 23, 2003 at 21:34:58.160 UT and SR transients recorded at Nagycenk, Hungary are presented in Fig. 2. The distribution of CM change estimates is shown in Fig. 3. Out of the 101 TLE events, 76 SRs were suitable to deduce CM changes. The largest value reached is about 4500 Ckm, while the typical values are about 300–700 Ckm.

Acknowledgement

This work was supported by the Hungarian Scientific Research Fund NI 61013.

References

- Burke C P, Jones D L I 1996: On the polarity and continuing currents in usually large lightning flashes deduced from ELF events. J. Atm. Terr. Phys., 58, 531–540.
- Frantz R C, Nemzek R J, Winckler J R 1990: Television image of a large upward electrical discharge above a thunderstorm system. *Science*, 249, 48–51.
- Huang E, Williams E, Boldy R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C 1999: Criteria for sprites and elves based on Schumann resonance observations. J. Geoph. Res., 104 (D14), 16943–16964.

- Jones D L I 1967: Schumann resonances and e.l.f. propagation for inhomogeneous, isotropic ionosphere profiles. J. Atm. Terr. Phys., 29, 1037-1044.
- Jones D L I, Kemp D T 1970: Experimental and theoretical observations of Schumann resonances. J. Atm. Terr. Phys., 32, 1095-1108.
- Neubert T, Allin T H, Blanc E, Farges T, Haldoupis Ch, Mika A, Soula S, Knutsson L, van der Velde O, Marshall R A, Inan U, Sátori G, Bór J, Hughes A, Collier A, Laursen S, Rasmussen Ib L 2005: Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign. J. Atm. Solar-Terr. Phys., 67 (8-9), 807-820.
- Sátori G, Szendrői J, Verő J 1996: Monitoring Schumann resonances I. Methodology. J. Atm. Terr. Phys., 58, 1475-1481.
- Schumann W O 1952: On the free oscillations of a conducting sphere which is surrounded by an air layer and an ionosphere shell. *Zeitschrift für Naturforschung*, 7a, 149–154.
- Wait J R 1962: Electromagnetic Waves in Stratified Media, second ed. Pergamon Press, New York, 1962, p. 153, Section 5.

MAGYAR NGOMÁNYOS AKADÉMA KÖNYVTARA

VARIATION OF GEOMAGNETIC ACTIVITY -- A STUDY BASED ON 50 YEARS TELLURIC OBSERVATIONS AT NAGYCENK OBSERVATORY

Á. KIS, A. KOPPÁN, I. LEMPERGER, T. PRODÁN,J. SZENDRŐI, J. VERŐ, V. WESZTERGOM

Introduction

From the ground based magnetometer measurement different activity indices are obtained. Some of them cover many solar cycles: K index was introduced by Bartels in 1939, Ap index is available since 1932. Many features of the geomagnetic and solar activity have been discovered by spectral and statistical analysis of the uninterrupted time series of indices. Beside the well known 11 year and annual cycle, and the coronal holes related 27 days recurrence period, a 13.5 day period was found recently. The semi-annual and annual variabilities are related to the tilt of the Earth's orbit to the Sun's rotation axis. The 11 year variability of the geomagnetic activity is more or less correlated with the solar activity cycles but in the geomagnetic activity three major peaks appear according to the dominance of different sources.

Nagycenk Observatory has been providing a special activity index called T scaled from continuous telluric (geoelectric) recording. The telluric field is generated by the time variation of the geomagnetic field (curl $\mathbf{E} = -\partial \mathbf{B}/\partial t$) therefore T characterises the higher frequencies in comparison with the magnetic range indices (since \mathbf{E} is proportional with the angular frequency of the geomagnetic variation). Statistical analysis of T confirms the main characteristics of geomagnetic activity known from numerous former studies (e.g. Schreiber 1998) but slight differences are found due to the dominating higher frequency variations like giant pulsations.

Á. KIS et al.

T index data series

The high time resolution Earth current measurements started in 1957 at Nagycenk Geophysical Observatory (NGO). The 3 hour T index is scaled from 0 to 9 characterizing the geoelectric activity during 3 hour intervals corresponding to the largest range covered by the variation of Ex and Ey. The (daily) T index is the sum of the corresponding three hour T index values. The ten classes of the range are scaled with a linear step of 1.8 mV/km. Before the digital recording, i.e. from 1957 to the early nineties, the data series of the T index were obtained from the so-called normal run Earth current recordings (25 mm/hour). To ensure a continuous digital data for almost five decades. the earlier data has been carefully transformed to digital format by hand. This way we obtained a uniform (digital) data series for the past 48 years. The 3-hour interval proved to be an adequate indicator of geomagnetic transient events and to provide a suitable time resolution as well.

Like any other geoelectric and geomagnetic indices, the T index also has its limitations. The activity level is strongly affected by the local time, by the geomagnetic latitude and by the local geological structure (i.e., the spatial distribution of the conductivity): the latter can strongly influence the electric field. According to the earlier investigations (Ádám and Verő 1967, 1981) the observatory lies on the slope of a local crystalline basement. The thickness of the conductive sediment is about 1500 m. This fact implies that the periods of the variations shorter than 8 min lie in the magnetotelluric (MT) S-interval, i.e. in the increasing branch of MT sounding curves, which represent the high-resistivity basement. This means that the phase shift between the electric and the magnetic field is close to zero and the surface impedance is nearly constant.

Corresponding to the outlined conditions, the magnetic and electric variations expressed in nT and mV/km, respectively, have the same numerical value during normal (i.e. quiet) daily variations. The numerical value of electric variations are about 2–5 times larger than the corresponding magnetic ones during in the period range of substorms and about 100 times larger in the scale frequency of pulsations. Slight anisotropy is caused by regional effects. The transfer function between the magnetic and electric field components is routinely determined in order to check the scale value of the measurements in the observatory.

The thick conductive sediment preserves the observation site from the man-

made disturbances. General analysis of the man-made ULF noise was carried out by Villante et al. (2004) at NGO and other observatories. From this analysis it was concluded that the man-made noise amplitude at NGO is orders of magnitude lower than the variations caused by natural effects, however the spectral analysis of long time data series might be influenced by working days of stronger effects and reduced weekend noise levels. To conclude, the T index determined from records at NGO is minimally distorted and it can be regarded as a valuable and representative indicator of geomagnetic induction.

Analysis of the T index

Fore some reasons the geoelectric field is seldom measured continuously and its nature is much less known than the characteristics of the geomagnetic field. The knowledge of the long term characteristics of the geoelectric field is of increasing importance in several space weather applications, especially in geomagnetic risk assessments. This fact also increases the value of the T index data series.

In our study we present a statistical analysis of the T index for the recent 47 years and its correlation with solar activity and the Ap index.

Fig. 1 presents from top to bottom the T index and the sunspot number versus time for the time period under investigation. Both the T index and the sunspot number data series were smoothed with a 1-year running average in order to filter out the high-frequency fluctuations and to be able to study the long-term variations. The sunspot number variation, which reflects the changes in solar activity, seems to have minimal effect on the T index variation, i.e. on the geoelectric activity.

Fig. 2 presents the unbiased covariance value between the T index and the total sunspot number. As it can be seen, the unbiased covariance does not have a maximum value at year 0, instead it has a local maximum at ~ 2.7 years.

Figure 3 presents the Ap index versus the T index. Both the Ap and the T indices were one year averaged. It can be seen that the Ap and the T indices are almost linearly correlated. This is clearly demonstrated on the upper panel of Fig. 4, where the unbiased covariance between the 27 day averaged T and the Ap indices is shown. The lower panel in Fig. 4. presents the T index versus the Ap index. The occurrence of high geomagnetic activity and its coincidence with high value of the induced electric fields shows that the Ap and the T indices reflect essentially the same geoelectromagnetic activity. The almost linear relation between the Ap and

Fig. 1. Fifty years of T index (top) and sunspot number (bottom) data smoothed with one year running average are plotted

Fig. 2. Unbiased cross-covariance between sunspot number and T index

the T indices suggests that the Ap indices can be calculated from the T indices. However, some differences might result between the observed and the calculated Ap indices, since the T index is influenced by the pulsation activity.

In order to study the average variation of the T index, we superposed and normalized the T index values for each year beginning with the year 1957 up to 2005. As it can be observed in Fig. 5, the yearly averaged T index presents two maximums during one year time period. This yearly average wave has a clear six-month periodicity. Both equinoctial maxima are roughly of the same level, however the summer values are slightly higher than the winter ones. This deeper winter activity in our opinion might be connected to the winter anomaly, which is a decrease of the pulsation activity in high solar activity years.

Fig. 3. One year running average smoothed T (top) and Ap (bottom) indices

Fig. 4. Unbiased covariance of Ap and T indices (top), 27 day running average smoothed T versus Ap (bottom)

In the power spectrum of daily T sums shown Fig. 6 a significant peak occur at 11 years which can be related to the solar cycle. At shorter periods there is a lot of peaks between 1 and 11 years possibly resulting from the irregular form of solar cycle wave. The well known half-year wave of geoelectromagnetic activity is the strongest in its period range but there is also a yearly wave which can be due to a change in the direction of the geomagnetic disturbance vectors as the resistivity tensor of the Nagycenk Observatory is slightly elongated towards E-W (or ENE-WSW).

The next higher frequency group of peaks belongs to the 27-day rotation of the Sun together with its second and third harmonics moreover as rather small peak at about 28 days might be due to the influence of the Moon. The 13.5 day

Á. KIS et al.

Fig. 5. Forty year average of daily T index at each day of year and its 27-day running average curve

Fig. 6. The well known spectral peaks are indicated on the spectra of the T index. (The 11 year solar cycle is the outside right peak)

quasy- periodicity peak also clearly appears on the spectra produced by two-stream structures (Mursula and Zieger 1996).

Conclusions

Nearly fifty years long time series of the NCK observatory is a representative, homogeneous and unique data set for statistical analysis of the long-term variation of the geomagnetic induction effect.

The present study compared earth-current (telluric) activity index T with sunspot number and geomagnetic Ap indices. Occurrence of high geomagnetically

106

induced electric fields and their coincidence with the phases of solar activity is less clear than that of maximum magnetic activity but it was shown that Ap and T indices reflect essentially the same geoelectromagnetic activity which is turn correlated with sunspot number. As the weights of variations with different periods are rather different in geomagnetic and earth-current indices there are also differences between the two kinds of activities. It is tried to identify such differences between the two time series and also in the connection with solar activity time series. Several kinds of differences result from the influence of the pulsation activity on the T index. With the help of a polynomial connection between Kp and T indices expected values can be computed from Kp for T. The difference of the observed and computed T indices may contain information about the effect of changing spectrum of geoelectromagnetic activity on these indices.

References

- Ádám A, Verő J 1967: Latest results of electromagnetic measurements in Hungary (in Hungarian). *Geofizikai Közlemények*, 16, 25-52.
- Adám A. and Verő J 1981: The geophysical observatory near Nagycenk Electromagnetic measurements and processing of data. Acta Geod. Geoph. Hung., 16, 331-351.
- Mursula K, Zieger B 1996: The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: The last three solar cycles, it J. Geophys. Res., 101, 27077-27090.
- Schreiber H 1998: On the periodic variations of geomagnetic activity indices Ap and ap. Ann. Geophys., 16, 510-517.
- Viljanen A, Nevanlinna H, Pajump K, Pulkkinen A 2001: Time derivative of the horizontal geomagnetic field as an indicator., *Ann. Geophys.*, 19, 1107-1118.
- Villante U, Vellante M, Piancatelli A, Di Cienzo A, Zhang T L, Magnes W, Wesztergom V, Meloni A 2004: Some aspects of man made contamination on ULF measurements, Ann. Geophys., 22, 1335-1345.

CONNECTION BETWEEN WHISTLERS AND Pc3 PULSATION ACTIVITY AT TIME PERIODS OF QUIET AND DISTURBED GEOMAGNETIC CONDITIONS

Á. KIS¹, A. KOPPÁN¹, I. LEMPERGER¹, T. PRODÁN¹, V. WESZTERGOM¹, J. SZENDRŐI¹, Cs. FERENCZ², J. LICHTENBERGER²

¹Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences ²Space Research Group, Eötvös Loránd University, Budapest, Hungary

We investigate the connection between whistlers and Pc3 pulsation activity. For our investigation we used magnetic data provided by the Nagycenk Geophysical Observatory $(L \sim 2)$ and whistler data from the nearby Tihany Geophysical Observatory recorded in year 2003. Both whistler and Pc3 pulsation data is hourly data. The whistler data provides the number of whistlers observed in one hour time period, while the Pc3 pulsation data presents the maximum amplitude value in the frequency range of Pc3 pulsations for the same time period. Our results show that in contrary to previous results (Verő et al., 1997) there is no visible correlation between the Pc3 pulsation intensity and the whistler occurance frequency. However, for the time periods of strong geomagnetic disturbances the appearance of whistlers in unusually large numbers is followed by Pc3 activity of large intensity.

Introduction

Two of the most important physical phenomena which are closely related to the plasma condition of the magnetosphere are the whistler waves and the Pc3 type geomagnetic pulsations. The practical advantage of whistlers and pulsations is that both can be studied by using ground measurements, therefore the data is more easily accessible than the data provided by sophisticated and expensive in-situ satellite measurements. Generally speaking, mid-latitude geomagnetic pulsations can be divided into two typical groups. While both types draw their energy from the so-called upstream waves (from now on: UW), the first type is driven directly by UW which are only slightly modified during their travel through the magnetosphere and as a consequence in the limited range of mid-latitudes they have practically the same period (and frequency). On the other hand, the second type is generated by a resonance mechanism of the geomagnetic field lines due to excitation by UW.

latter type of pulsation is called Field Line Resonance (FLR). The period (and the frequency) of FLR is a function of latitude. The variation of the FLR-type pulsation frequency with latitude is easy to understand if we take into consideration that the geomagnetic field line length changes with latitude. It is worth mentioning that the exact physical mechanism of energy transfer and coupling from the UW to the ground is not completely understood neither in the case of UW-type pulsation nor in the case of FLR. In order to be able to distinguish between UW and FLR type pulsations several meridional arrays were organised with the Nagycenk Observatory (NCK) in the center. In the first array, periods changed with latitude in roughly half of the events, sometimes smoothly, sometimes stepwise with latitude (Cz. Miletis 1980). Based on the results of the continuous studies became evident that by using data from a network of meridional array geomagnetic observatories FLR and UW type pulsations can be identified with high accuracy. A more comprehensive description of the results can be found in the review article by Verő (1986). The whistler waves have their source in terrestrial lightning. It is widely accepted the idea that at lightning a non-monochromatic very low frequency (VLF) wave package is generated which is (at least partially) able to step out into the magnetosphere. Afterwards this wave is traveling parallel mostly to the geomagnetic field lines and can be detected on-ground on the conjugate point of the field line on the other hemisphere. During its propagation in the magnetospheric region the wave package becomes highly dispersed. Maeda and Kimura (1956) were the first to show that propagation along the field lines would be impossible without 'ducts'. Smith (1960) and Smith et al. (1960) presented the theory for the propagation in ducts. Walker (1976), Laird and Nunn (1975) and Strangeways (1982) contributed significantly to this theory. Ducts have no sharp boundaries; they are more smoothly varying enhancements in electron density. Also it is known that the same whistler may propagate in numerous close ducts. However, the existence of these ducts still it is as open question. Multiple whistlers, which result from the same lightning, but propagate on different paths, support the idea of the existence of ducts. Lichtenberger (1994) determined the angle between the propagation of whistlers and the direction of the magnetic field. These angle values (10 to 15 degrees) also support the existence of ducts since without a duct the angle would be much larger. On the other hand, there are recently published new results which question the necessity of ducts in the propagation mechanism of whistlers (O. Ferencz et al. 2006). For a detailed discussion and description on whistlers see Cs. Ferencz et al. (2001).

Fig. 1. Maximum amplitude in Pc3 activity versus time recorded in year 2003 at NCK. Each diamond-shaped symbol represents the maximum amplitude in Pc3 frequency range for the respective one-hour time period in a linear-linear scale. This method (i.e. taking the maximum value instead of an averaged value) gives back more accurately the intensity of the individual events

Fig. 2. Maximum amplitude in Pc3 activity versus time in lin-log scale

Verő et al. (1997) analyzed the supposition that whistler ducts and geomagnetic field line shells are closely connected with each other as they appear simultaneously with enhanced probability. They found a very close connection between the oocurance frequency of whistlers and geomagnetic Pc3 pulsation activity. According to their results the connection is nearly linear; if there are no whistlers, the pulsation activity is either extremely low or no pulsation activity exists. In our study we expand these earlier studies by verifying the connection between the Pc3 pulsation activity and whistlers. We approached the problem by using statistical methods, but we analyze individual events also.

Fig. 3. Maximum amplitude in Pc3 activity versus time in lin-log scale.

Observations and Discussion

Statistical Results: General Behavior

For our investigation we used magnetic data provided by the Nagycenk Geophysical Observatory (NCK) situated at L~2 and whistler data from the nearby Tihany Geophysical Observatory (TGO) recorded in year 2003. Both whistler and Pc3 pulsation data is hourly data. The whistler data provides the number of whistlers observed in one hour time period, while the Pc3 pulsation data presents the maximum amplitude value in the frequency range of Pc3 pulsations for the same time period. This method (i.e. taking the maximum value instead of an hourly averaged value) gives back more accurately in our opinion the intensity of the individual events. Figure 1 presents the maximum amplitude in Pc3 pulsation activity (from now on: Pc3 activity) in arbitrary units versus time in linear-linear scale recorded in year 2003. Each diamond-shaped symbol represents the maximum amplitude in Pc3 frequency range for the respective one-hour time period. Figure 2 also presents the Pc3 activity versus time, but in a linear-logarithmic scale. It can be seen that CONNECTION BETWEEN WHISTLERS AND Pc3 PULSATION ACTIVITY

Fig. 5. Whistler number versus Pc3 activity for the year 2003 presented in log-log scale

Fig. 6. Dst index versus time

besides the more quiet time periods there are to be found a significant number of events which are characterized with orders of magnitude higher Pc3 activity. The time gaps where the pulsation activity value is missing are due to lack of reliable

Fig. 7. Pc3 activity and whistler number versus time

data from the observatory records. Figure 3 presents the number of whistlers (i.e. the number of whistlers observed during one hour time period) versus time for the year 2003. It can be seen that there are events with very high whistler occurrence and it seems that these events appear more in groups rather than being scattered in time. In Figure 4 for better visibility we over plotted the Pc3 activity and the number of whistlers versus time in linear-linear scale. In order to investigate the connection between the whistlers and the Pc3 activity we plotted the hourly whistler number versus the maximum value of Pc3 activity for the same hour in Figure 5. It can be seen that the number of whistlers is not correlated with the Pc3 activity. Whistlers occur in high numbers during times of low Pc3 activity and high Pc3 activity does not necessary means the presence of whistlers in high numbers. This is in contradiction with the results by Verő et al. (1997), who found a clear, almost linear connection between the whistler number and the Pc3 activity. The explanation of the discrepancy between the previous and our results might be that for our investigation we used an hourly Pc3 activity, while Verő et al. (1997) used a daily pulsation index. The fact that by using an hourly Pc3 activity we were not able to reproduce the previous results shows the complexity of the problem. For an exact answer more investigation is needed. For now we can only conclude, that we found no evidence of correlation between the hourly occurrence frequency of whistlers and the hourly Pc3 activity.

Individual Events

In our study of individual events we focused on time periods of strong geomagnetic disturbances. We choose two events from the year 2003, when the geomagnetic Dst index indicates the occurrence of large geomagnetic storms. Figure 6 presents the Dst index versus time from the last period of year 2003. It can be seen that during this time period two major geomagnetic disturbance events occurred. Figure 7 presents the hourly whistler number and the Pc3 activity for the same time period. If we compare Figure 6 and with Figure 7 we can observe that after the strong geomagnetic disturbances (reflected in the Dst index) whistlers appear in an unusually high number, which is followed by intense Pc3 activity. The sequence of events is the same in both cases, however the time periods between them is not exactly the same. In our opinion this might be the consequence of changes in the value of plasma parameters in the near Earth environment. In order to completely understand the physical mechanism which leads to this chain of events further analysis is needed. In any case, our results are the first to suggest that a strong geomagnetic storm changes the near Earth plasma environment in such a way, that leads to an unusually high whistler occurance and enhanced Pc3 activity.

Acknowledgements

The authors are grateful for the support accorded by the Hungarian Academy of Sciences. This work was supported by the Hungarian Scientific Research Fund NI 61013.

Á KIS et al.

References

- Cz. Miletis J 1980: Microstructure of the latitude dependence of Pc-type pulsation periods. J. Atm. Terr. Phys., 42, 563–567.
- Ferencz C, Ferencz O E, Hamar D, Lichtenberger J 2001: Whistler Phenomena:Short Impulse Propagation. Edited by Ferencz, C, Ferencz O E, Hamar D, Lichtenberger J. Published by Kluwer Academic Publishers, Dordrecht, The Netherlands
- Ferencz O E, Ferencz C, Steinbach P 2006: Ducted and Free-Space UWB Propagation of Transient Signals in Space Environment. Proceedings of the European Conference on Antennas and Propagation: EuCAP 2006 (ESA SP-626). 6-10 November 2006, Nice, France. Editors: H Lacoste and L Ouwehand. Published on CDROM., p. 810.1.
- Laird M J, Nunn D 1975: Full-wave VLF modes in a cylindrically symmetric enhancement of plasma density. *Planet. Space Sci.*, 23, 1649.
- Lichtenberger J 1994: Determination of the direction of the wave normal of whistlers. Ph.D. Thesis, Eötvös University, Budapest.
- Maeda K. Kimura I 1956: A theoretical investigation of the propagation path of the whistling atmospherics. Report of Ionosphere and Space Research in Japan 10, 105– 123.
- Smith R L 1960: Guiding of whistlers in a homogenous medium. J. Res. NBS-D, Radio Propagation 64D, 505-508.
- Smith R L, Helliwell R A, Yabroff I 1960: A theory of trapping of whistlers in field-aligned columns of enhanced ionization. J. Geoph. Res., 65, 815-823.
- Strangeways H J 1982: The effect of multiduct structure on whistler-mode wave propagation. J. Atm. Terr. Phys., 44, 901-912.
- Walker A D M 1976: The theory of whistler propagation. Reviews of Geophysics and Space Physics, 14, 629.
- Verő J 1986: Experimental aspects of low-latitude pulsations A review. J. Geoph. Res., 60, 106–119.
- Verő J, Holló L, Bencze P, Märcz F 1997: Whistler ducts and geomagnetic pulsation resonant field line shells near L=2 – are they identical? J. Atm. Solar-Terr. Phys., Vol. 59, No. 14, 1855–1863.

TIME VARIATION OF ELECTRIC POTENTIAL DIFFERENCES ON TREE TRUNK

A. KOPPÁN, L. SZARKA, V. WESZTERGOM

Introduction

Bioelectric phenomena at tissue and organism levels are sometimes less known in plants than in animals, although the problem of plants seems to be simpler than that of animals or humans. In situ electrical measurements on plants especially on trees have proven to be very difficult. Investigation of bioelectric phenomena of trees became widespread in the last decades, but many question remained unanswered. e.g. the true relationship between life- functions of the tree and the measured electric signals. The effect of the environment on the electric signals is also not yet fully explained.

Measurements and some results

We started the first bioelectric experiments in 1995, primarily focusing on the measurements of electric potential differences (EPD) on the tree trunks. The EPDs were recorded continuously for four years (between 17.05.1997 and 28.02.2002) at the Széchenyi István Geophysical Observatory. As shown in Fig. 1 a–b, sixteen non-polarizing electrodes were inserted beneath the cambium into the sapwood of a turkey oak (Quercus cerris L.) at four height levels (at 0, 2, 4 and 6 m), and at each height level four electrodes (corresponding to S, W, N and E sides of the tree) were installed. The EPDs were measured between the trunk electrodes and a common ground. The sampling interval was kept as short as 1 sec. and 1 minute mean values were continuously recorded.

The electric potential differences on tree trunks change over time. The most noticeable variation is the regular daily fluctuation whose amplitude is a few tens of mV. The daily activity is most likely related to the transpirations daily rhythm. The amplitude of the daily fluctuations shows a characteristic seasonal variation as well, with two maxima. The first peak occurs at frondescence (due to the very intense transport processes within the tree), while the second one appears in early summer (Koppán et al. 2000). Beyond the temporal changes we investigated the spatial variations of EDPs. too (Koppán et al. 2005).

Fig. 1. The electric potential difference measuring system in the Nagycenk Observatory

After determining the variations of the electric potential differences and their characteristics the next step was to define which internal processes and environmental parameters might be the source for the formation and changes of the electric potential differences. The most important internal process is the axial water transport in the tree trunk. This fact is confirmed by the correlation analysis of the sap flow and electric potential difference data (Fig. 2.), which showed a close connection between the two data series. The sap flow was simultaneously recorded from July 1999 to December 1999 with Graniers radial flowmeter technique (Granier 1987) by using a four-channel (four thermocouples) system.

In order to understand the tree - environment interactions, it is important to study, which environmental factors could directly or indirectly affect the EPDs. We revealed relationships between the variations of the EPDs and various meteorological/geophysical parameters (recorded at the Observatory) by using a multivariate statistical analysis, although the assessment of the results is difficult due to the many unseparable external and internal factors, acting simultaneously. Such measurements are carried out nowadays in frame of a complex geoenvironmental project, in cooperation with the University of West-Hungary (Gribovszki et al. 2004). POTENTIAL DIFFERENCES ON TREE TRUNK

Fig. 2. Variation of electric potential differences (top) and the sap flux index "Kö (bottom) derived from Granier (1987) thermometric method (14-20 September 1999)

References

- Granier A 1987: Mesure du flux de seve brute dans le tronc du Douglas par une nouvelle methode thermique. Ann. Sci. For., 44, 1–14.
- Koppán A, Szarka L, Wesztergom V 2000: Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. *Comptes Rendus Acad. Sci.* Paris, Sciences de la vie/ Life Sciences 323, 559–563.
- Koppán A, Szarka L, Wesztergom V 2005: Local variability of electric potential differences on the trunk of Quercus cerris L. Acta Silv. Lign. Hung., Vol. 1, 73–81.
- Gribovszki Z, Koppán A, Kalicz P, Pápai I, Vig P 2004: The effects of meteorological and geophysical parameters on the short time fluctuations of eco-hydrological phenomena. European Geosciences Union 1st General Assembly, 25–30 April, 2004, Nice

119

A STUDY ON THE LONG TERM BEHAVIOR OF THE IMPEDANCE TENSOR AT NAGYCENK GEOPHYSICAL OBSERVATORY

I. LEMPERGER, Á. KIS, A. NOVÁK, J. SZENDRŐI, V. WESZTERGOM, P. BENCZE, L. SZARKA

In the Observatory, a parallel monitoring and registration of geomagnetic and telluric variations has been carried on for more then fifty years. At the first approach we started to compare the spectral energy distribution of the minute mean value horizontal telluric and magnetic components of the last four years. The impedance tensors spectra have been calculated by using one day time intervals for the whole four years. Based on the plane wave assumption we expected some stable behavior of the transfer function. On the contrary certain periods has been found in the time variation of some spectral component. This appeared mostly in the phase of the tensor elements. Dominant spectral peaks have been shown at periods of 93 days and one year related to seasonal variation and the Earth orbiting respectively. So as to extend our examination on longer time interval, we started to digitize the analogue telluric and magnetic records we archived since 1962. We also propose to investigate the deviation of estimated apparent resistivity curves resulting from the above variation of the impedance tensor and to analyse the long term behavior of some magnetotelluric invariants.

Introduction

Magnetotelluric studies provide important contribution to our knowledge of the subsurface structures. Assuming that the resistivity horizontally homogeneous and the EM field variations are also homogenous at the characteristic scale size of the studied area the resistivity distribution can be derived directly from electric and magnetic field observation. The rate of the variation of horizontal electric and magnetic field at each frequency band is namely the impedance function. The apparent resistivity values obtained by this transfer function on different frequencies is related to the electrical resistivity in different depth below the surface. Longer period samples deeper structures. But the values of this transfer function depends on the underground conductivity distribution as well as on the geometry of the source. Thus the well-known magnetotelluric data processing and analysis results systematic error so called source effect. In most cases the plane wave assumption

1. LEMPERGER et al.

gives good approach (Cagniard 1953, Price 1953), but at high latitudes the auroral electrojet and at low latitudes (the magnetic equator) the equatorial electrojet causes such a distortion. This paper is a brief summary of our works focusing on the possible source effect in mid latitudes especially which can be shown based on the data of the Nagycenk Geophysical Observatory.

Geomagnetic and telluric data

The Széchenyi István Geophysical Obsevatory was founded in 1957. Since the beginning the observatory provides continuous earth current and geomagnetic observations with control of absolute measurements. The potential differences are measured in North-South and East-West directions with electrode spacing of 500 m and recorded with 1 sec and 10 sec sampling rate. Low polarization lead plate electrodes are buried about 2 m below the surface. Resolution of recording is $20000 \text{ mV/km/2}^{14}$ bit. Geomagnetic variations are recorded by the ARGOS system which is developed by the Geomagnetism Group of British Geological Survey as a PC based automatic observatory equipped with triaxial fluxgate and proton magnetometer in DD/DI configuration. 10 second samples are used to provide minute values centered on the minute by means of a 7-point cosine filter. The resolution and dynamic range of the triaxial fluxgate and the proton magnetometer is 0.1 nT, $\pm 500 \text{ nT}/\pm 400 \text{ nT}$ and 0.1 nT, 10000–90000 nT respectively.

The data recorded by the ARGOS system had been checked on before archiving and in cases of system failure the missing data has been rectified by means of the geomagnetic time serial measured by the backup system (DR02).

The observatory lies on a thick conductive sediment and is surrounded by a National Park preserving the site from far industrial noise and manmade activity. The selected interval is a four year period (2000–2003), which is in the ascending phase of the solar activity just after the minimum.

Data Processing

As mentioned above the geomagnetic data used in this work was free of gaps so no interpolation should be applied. Whereas the telluric time serial was not continuous, in cases of few minute long missing intervals spline interpolation seemed to provide reliable data. Unfortunately in the last days of June, 2000 we had a 2-3 day long system failure which was impossible to bridge accurately. Except that

122

critical interval less than 100 data sample had been interpolated and none of the gaps was longer than 10 samples (100 seconds) in the subinterval processed used for further processing (1024 days from the date 01.04.2000). The telluric data should be presented with 1 minute sample rate for compatibility. This could be accomplished by means of the same type of digital filter which is applied on the raw 10 second sampled geomagnetic data. The recorded minute value time series of H, D, Z geomagnetic elements has been transformed to X, Y and Z components. To obtain the optimal temporal and spectral resolution of the impedance function we performed the processing on two different scaling. In the first approach the geomagnetic and the telluric data had been split into four-day pieces as basic elements of the whole dataset. As the ensuing data processing proved, this time resolution was not satisfactory for many reasons. Therefore the elementary unit of the time series considered to be one day long (1440 minute sample). These time segments have been processed by the method of J Verő (Verő 1972).

The main phases of data process are as follows:

1. Separation of signals with different periods

The task is completed by a convolution type filter truncated with a Hanning window. The filter functions are the following:

$$F(t) = \frac{1}{2\pi t} \left(\sin \frac{2\pi t}{p_1} - \sin \frac{2\pi t}{p_2} \right) \left(\cos \frac{2\pi t}{T} + 1 \right) \quad F(0) = \frac{2d}{p_1} - \frac{2d}{p_1}$$

for the in-phase component.

$$G(t) = \frac{1}{2\pi t} \left(\cos \frac{2\pi t}{p_1} - \cos \frac{2\pi t}{p_2} \right) \left(\cos \frac{2\pi t}{T} + 1 \right) \quad G(0) = 0$$

for the out-phase component.

 p_1 – lower period limit, p_2 – upper period limit, d – digitization interval.

The estimations have been processed on periods with relation quotients of 1.1.

2. Selection of information that can be used for the determination of the tensor Randomly appearing leakage currents, digitization errors or simply a temporary disappearance of certain period bands may produce a decrease in coherency. Such intervals must be excluded from further processing. The selection is based on coherence analysis between cross-channels. In the further processing the coherence threshold has been set to 0.8.

Fig. 1. Spectral components of long term variation of the modulus and phase of Z_{xy} impedance tensor element

3. Computation of the elements of the impedance tensor

The detailed description of method used for the computation of the impedance tensor elements can be found by Verő (1972). The formulas are the following:

$$Z_{xx} = \frac{|E_x|}{|H_x|} \frac{\operatorname{Coh}(E_x, H_x) - \operatorname{Coh}(E_x, H_y) \operatorname{Coh}(H_y, H_x)}{1 - |\operatorname{Coh}(H_x, H_y)|^2}$$
$$Z_{xy} = \frac{|E_x|}{|H_y|} \frac{\operatorname{Coh}(E_x, H_y) - \operatorname{Coh}(E_x, H_x) \operatorname{Coh}(H_x, H_y)}{1 - |\operatorname{Coh}(H_x, H_y)|^2}$$
$$Z_{yx} = \frac{|E_y|}{|H_x|} \frac{\operatorname{Coh}(E_y, H_x) - \operatorname{Coh}(E_y, H_y) \operatorname{Coh}(H_y, H_x)}{1 - |\operatorname{Coh}(H_x, H_y)|^2}$$
$$Z_{yy} = \frac{|E_y|}{|H_y|} \frac{\operatorname{Coh}(E_y, H_y) - \operatorname{Coh}(E_y, H_x) \operatorname{Coh}(H_x, H_y)}{1 - |\operatorname{Coh}(H_x, H_y)|^2}$$

4. Spectral analysis of impedance elements

The long term variation of each impedance element at each frequency has been examined through Fourier-decomposition. The transformation has been carried out on both modulus and phase of the elements. The results of Z_{xy} element are displayed on Fig. 1.

LONG TERM BEHAVIOR OF THE IMPEDANCE TENSOR

Fig. 2. Mean spectral amplitude of the Z_{xy} and φxy variation in the range 3-10 minutes

On Fig. 1 no significant Fourier component can be recognised beside the DC in the whole periodrange of 2 min-8 hours. However, the detailed examination of the behavior of the period range 3–10 minutes results some peaks in the long term spectra, fee Fig. 2 Some of them can be associated with well known processes like the annual (340 days), the seasonal (93 days) and the 2nd harmonic of the Carrington period (54 days). The clear Carrington period doesnt produce significant peak and the Lunar cycle doesnt appear either. A 33 day component also appears which can hardly be explained, although the same spectral component has been recognized in the statistical analysis of the CME ejection of the Northern hemisphere of the Sun. (The 340 day long component can be identified as annual variation, the 15 day difference is an artifact because the applied Fourier-window was set to 1024 days, less then 3 years.) Note that no such components can be recognized on the spectra of $|Z_{xy}|$.

To clarify how the peaks come, spectral analysis of H and E field polarization has been carried out, see Fig. 3, Fig. 4.

Note that the peaks of the spectral decomposition of φxy can be obtained as the peaks that appear on the polarization pattern of the H but is not present in the E polarization variation, namely the annual and seasonal components. Detailed

125

Fig. 3. Periodicity in the polarization pattern of horizontal geomagnetic field

Amplitude spectra of phase difference between Ex and Ey (mean phase difference of period range 2-120 min is diaplayed)

Fig. 4. Periodicity in the polarization pattern of the telluric field

analysis of long term periodicities has been carried out at each frequency which φxy has been calculated, but no subrange shows different behavior then the mean shown above. (The figures of recognized periodicities dont match on Fig. 2 and

Fig. 3 because the applied Fourier window is different.) Further examination of the long term behavior of the impedance tensor is in progress to clarify the physical processes and the coupling between the well known periods and the long term behavior of the impedance tensor. Detailed analysis of Z on more extended time interval is also proposed. The digitization of earlier analogue registrations is already set up.

Acknowledgement

This work is supported by the Hungarian Scientific Research Fund NI 61013.

References

- Cagniard L 1953: Basic theory of the magneto-telluric method of geophysical prospecting. *Geophysics*, 18, 605-635.
- Wait J 1953: On the relation between telluric currents and the Earths magnetic field. Geophysics, 18, 281-289.
- Mareschal M 1986: Modelling of natural sources of magnetospheric origin in the interpretation of regional induction studies: A review. *Surv. of Geophys.*, 8, 261–300.
- Pirjola R 1992: On magnetotelluric source effects coused by an auroral electrojet system. Radio Science, 27, 463-468.
- Price A T 1962: The theory of magnetotelluric methods when the source field is considered. J. Geoph. Res., 67, 1907–1918.
- Verő J 1972: On the determination of the magnetotelluric impedance tensor. Acta Geod. Geoph. Mont. Hung., 7, 333-351.

LONG-TERM CHANGES IN ATMOSPHERIC ELECTRICITY OBSERVED AT EUROPEAN STATIONS DURING SEVERAL DECADES IN THE LAST CENTURY

F. MÄRCZ¹ and R. G. HARRISON²

¹Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences. H-9401 Sopron, POB 5, Hungary
²Department of Meteorology, The University of Reading, POB 243, Earley Gate, Reading, Berks RG6 6BB, UK

Based on observations carried out at several stations in Europe, long-term changes have been reported for different atmospheric electrical parameters. Data series analysed have covered different periods ranging from the beginning of the twentieth century till the present. The potential gradient (PG) is the most commonly available quantity. A long-term PG decline seems apparent both in western Europe, e.g. UK (Eskdalemuir), Portugal (Serra do Pilar) and in the Middle European area, e.g. Hungary (Nagycenk). These changes were detected during different periods of the last century at the different sites, which are summarised in terms of the suitability of the data for global circuit studies. Records recently recovered also indicate a PG decline in the Russian area (Irkutsk), distant from stations investigated previously. In addition to the PG, air-Earth current density has also shown a decreasing trend at two distant stations in the 1970s, at Kew and Athens. The ionospheric potential is important for studying the atmospheric electrical global circuit. Balloon soundings of the ionospheric potential are consistent with the long term surface changes observed in the earlier period (up till 1971).

Keywords: meteorology and atmospheric dynamics (atmospheric electricity); analysis of atmospheric electrical data on a long time scale

1. Introduction

Early results on long-term changes in the atmospheric electrical potential gradient (PG) were derived from measurements carried out at Davos, Switzerland, at the beginning of the last century (1909/10, 1913, and 1923/26). The PG decline detected there was attributed to a local effect, arising from the decrease of the mean aerosol content in Davos valley causing, in turn, an increased local air conductivity (Israël 1973).

Subsequently the PG data for two stations in the UK was investigated: Eskdalemuir, Scotland (55°19' N, 30°12' W) and Lerwick, Shetland, (60°08' N, 1°11' W), for periods between 1911 and 1981 (Harrison 2002). This work also presented distinct long-term decreases in PG. In explaining these findings, a connection was made between the decrease of galactic cosmic rays (GCR) found in the twentieth century, and the reduction in the ionospheric potential (V₁). The V₁ change could explain the decrease of surface PG. Data obtained at another station in Europe, at Nagycenk in Hungary (47°38' N, 16°43' E), also hinted at a quite continuous PG decline (Märcz et al. 1997). The Nagycenk PG data have covered more than four decades in the second half of the twentieth century and continue.

2. Recent results on long-term changes in atmospheric electrical parameters

These first studies were extended to consider the long-term decline in atmospheric electricity at two distant stations simultaneously (Märcz and Harrison 2003). Despite the disturbing influence of nuclear weapon testing on the PG measurements at Eskdalemuir and a certain environmental effect caused by growing trees at Nagycenk, the PG data still showed small continued decreases at both stations, even with the considerable distance between them. In addition to the PG, Märcz and Harrison (2003) analysed vertical air-Earth current density data obtained at Kew in the UK (51°28' N, 0°19' W). A decline also appeared in this atmospheric electrical parameter which is known to be less strongly influenced by local surface effects (see Fig. 1).

In further work, Märcz and Harrison (2005) investigated the behaviour of atmospheric electrical parameters determined at two further stations in Europe. Both dawn and evening PG data of Serra do Pilar (Portugal, 41°08' N, 8°36' W) show a decreasing trend during the 1960s. At Athens (Greece, 37°58' N, 23°43' E) PG, air-Earth current density, positive air conductivity data (continuously from the midsixties to 1977). as well as positive small and large ion number concentrations are available. Consequently more complex analyses could be performed. As regards the PG, an increasing trend at Athens was attributed to the decrease of air conductivity in an increasingly polluted urban area. This was confirmed in the number concentrations of small and large ions. The dawn data of the air-Earth current density revealed a decreasing trend at Athens, during the 1960s and 1970s. Moreover, ionospheric potential soundings, carried out in Germany during the beginning of the same period, also hinted at a decrease of the V_1 values. Thus, it appears that LONG-TERM CHANGES IN ATMOSPHERIC ELECTRICITY

Fig. 1. Relative changes in PG at Eskdalemuir (circles) and Nagycenk (stars), using the mean values of PG found at Eskdalemuir from 1920 to 1981 (190 V/m) and Nagycenk from 1962 to 2001 (52 V/m) for normalisation. (The period of weapon tests, between 1950 and 1970, has been omitted from the Eskdalemuir data for clarity.) Relative changes are also shown in the monthly air Earth current J_z measurement made at Kew (London) from 1966 to 1978 (squares), which had a mean value of 1.4 pA/m²

the air-Earth current density measured at the surface responds to changes in the global circuit.

Märcz and Harrison (2005) tabulated the varied results available for summarizing atmospheric electricity changes in Europe during the last century. The work presented a table considering the priority which should be given to the disparate observations. Firstly, ionosopheric potential is the principal quantity for studying the atmospheric electrical global circuit, followed by the air-Earth current density. In the case of the potential gradient, the quality of air at measurement site was taken into account by ranking it as oceanic air, mountain air, continental rural air and, finally, urban air. For detecting global effects in the PG, the best possibility would be in oceanic air while the worst conditions are connected with urban air.

131

Fig. 2. Changes in dawn values of PG (based on data from 0200 to 0500 UT) at Irkutsk station (Russia) between 1977 and 1987 (see also text)

3. Signatures of long-term changes in atmospheric electrical potential gradient at a surface station in Russia

Atmospheric electrical measurements were carried out at some stations in Russia, in the twentieth century (Data in Publications of the USSR State Committee for Hydrometeorology). As mentioned previously, data obtained at Serra do Pilar covered the period of the sixties, and those at Athens were continuously available from 1965 to 1977. For Irkutsk station ($52^{\circ}16$ ' N, 104° E) in Russia, unbroken potential gradient series are available between 1977 and 1987. Thus, the behaviour of surface PG measurements may be investigated into an additional decade. Moreover, the station is situated in a rather different area from the locations previously analysed, in the western part of Asia, bordering on the European area.

Following the approach of Märcz and Harrison (2005), yearly means of the Irkutsk PG were determined for dawn hours (between 0200 and 0500 UT). In order to yield a more complete perspective, two additional data series have also been derived: dawn maxima and minima of each year, based on the three highest and the three lowest PG values appearing in individual months. The Irkutsk results are presented in Fig. 2, in which the yearly mean values of PG at dawn are seen to show a distinct decreasing trend. The PG drops from an initial value around 350 V/m in 1977 to about 200 V/m in 1987.

It seems therefore that a PG decline is also present at Irkutsk, as for the PG at several other surface stations (Eskdalemuir, Nagycenk, Serra do Pilar) analysed previously. Despite the larger fluctuations appearing in the maximum values derived for individual years, these results also confirm the decreasing trend revealed by the yearly means. In the case of dawn PG minima no clear tendency can be seen, however in general long-term changes in Irkutsk are not dissimilar to those detected elsewhere.

For yielding a general view and making possible appropriate comparisons, Table I has been compiled which includes results from previous work and those from this present paper. As well as the findings for Irkutsk, it summarizes the result derived for different atmospheric electrical parameters on long time-scales at several European stations.

4. Summary

As mentioned previously, ionospheric potential and air-Earth current density would be the most suitable measurements for tracing long-term changes in atmospheric electricity. However such long-term measurements spanning the twentieth century have not been made. The PG measured at the surface is the least preferable quantity, but provides the most abundant source of data for studies of the global circuit. The PG is affected by local influences, especially at continental surface stations. Nevertheless PG data are generally available for many more stations and for longer periods than those derived for air-Earth current density or the ionospheric potential. Consequently it is necessary to include PG data in investigations aimed at detection of long-term changes possibly due to global effects, even if the separation of local and global effects precludes a straightforward interpretation of either.

Station	Para-	Situation	Season	Selection	Samples	Start	Finish	Midpoint	Annual	r (lin.	Reference
	meter			method					change	fit)	
Weissenau	V_1	Balloon		all	293	1959	1971	1965	-3.4%	0.44	Märcz and Harrison
		sounding							$\pm 0.5\%$		(2005)
Weissenau	V_{I}	Balloon		Sounding	91	1965	1971	1968	-2.7%	0.26	Märcz aud Harrison
		sounding		Class 1,2,3					$\pm 1.0\%$		(2005)
Kew	J_z	Continental	annual	15UT	13	1966	1978	1972	1.4%		Märcz and Harrison
		(urban)									(2003)
Athens	Jz	Continental	annual	dawn	10	1968	1977	1972.5	-3.2%	0.50	Märcz and Harrison
		(urban)							$\pm 2.0\%$		(2005)
Carnegie	\mathbf{PG}	Atlantic	February-	Fair Weather	2	1929	1968	1948.5	-0.6%		Harrison (2004a)
and Meteor		oceanic air	March-	data, seasonal							
cruises			April	mean							
Wank	\mathbf{PG}	Mountain air	annual	Carnegie cycle	13	1972	1984	1978	-1.2%		Harrison (2004b)
				days							
Eskdalemuir	\mathbf{PG}	Continental	annual	All 0a days	31	1920	1950	1935	-0.7%		Harrison (2003)
		(rural)									
Nagycenk	\mathbf{PG}	Continental	annual	dawn	40	1962	2001	1981.5	-1.4%		Märcz and Harrison
		(rural)									(2003)
Serra do Pilar	PG	Continental		dawn	11	1960	1971	1965.5	- 6.5%	0.83	Märcz and Harrison
		(rural)							$\pm 1.5\%$		(2005)
Serra do Pilar	\mathbf{PG}	Continental		evening	11	1960	1971	1965.5	-2.1%	0.52	Märcz and Harrison
		(rural)							$\pm 1.2\%$		(2005)
Kew	\mathbf{PG}	ontinental	July	all	53	1898	1950	1924	0.3%		Harrison and Aplin
	na	(urban)					1005	1000	0.107	0.50	(2002)
Irkutsk	PG	Continental	annual	all	11	1977	1987	1982	-3.1%	0.73	Present work
		(urban)							$\pm 2.0\%$		

References

- Harrison R G 2002: Twentieth century secular decrease in the atmospheric potential gradient. Geophys. Res. Let., 29, 14, 1660, DOI 10.1029/2002GL014878
- Harrison R G, Aplin K L 2002: Mid-nineteenth century diurnal smoke concentrations at Kew, London. Atmos. Environ., 36, 25, 4037–4043.
- Harrison R G 2003: Twentieth century atmospheric electrical measurements at the observatories of Kew, Eskdalemuir and Lerwick. *Weather*, 58, 11-19.
- Harrison R G 2004a: Long term measurements of the global atmospheric electric circuit at Eskdalemuir, Scotland, 1911-1981. Atmos. Res., 70, (1), 1-19, 10.1016/j.atmosres.2003.09.007.
- Harrison R G 2004b: Long-range correlations in measurements of the global atmospheric electric circuit. J. Atmos. Solar-Terrestrial Physics, 66/13-14, 1127-1133.
- Israël H 1973: Atmospheric electricity, II. Fields, Charges, Currents, Israel Program for Scientific Translations, Jerusalem
- Märcz F, Sátori G, Zieger B 1997: Variations in Schumann resonances and their relation to atmospheric electric parameters. Ann. Geophysicae, 15, 1604–1614.
- Märcz F, Harrison R G 2003: Long-term changes in atmospheric electrical parameters observed at Nagycenk (Hungary) and the UK observatories at Eskdalemuir and Kew. *Ann. Geophysicae*, 21, 2193–2200.
- Märcz F, Harrison R G 2005: Further signatures of long-term changes in atmospheric electrical parameters observed in Europe. Ann. Geophysicae, 23, 1987–1995.
- USSR State Committee for Hydrometeorology (ed.) 1978-1988: Results of ground observations of atmospheric electricity (Data for Irkutsk station, 1977-1987), Leningrad

ON THE DYNAMICS OF SEASONAL REDISTRIBUTION OF GLOBAL LIGHTNING AS SHOWN BY SCHUMANN RESONANCE OBSERVATIONS IN THE SZÉCHENYI ISTVÁN GEOPHYSICAL OBSERVATORY AT NAGYCENK

G. SÁTORI

"Single station - global sense" idea is demonstrated in this study. The results presented here are valid in global sense and they are based on Schumann resonance observations in the Széchenyi István Geophysical Observatory at Nagycenk, Hungary. The daily Schumann resonance frequency (SRF) patterns are mainly determined by the lightning source-observer configuration. This configuration changes during the north-south seasonal lightning migration, consequently the daily SRF patterns vary, too. Four basic types of daily SRF patterns have been distinguished corresponding to the four seasons observed for each SR mode at Nagvcenk, Hungary, Crosscorrelation analysis has been used between the monthly means of daily SRF patterns in two adjacent months to identify the seasons. The number of months with daily SRF patterns characteristic for a season was different. Similar daily SRF patterns have been observed during five months (Nov-Dec-Jan-Feb-March) in the Southern hemisphere summer, in two months in both transition (spring and fall) seasons and during three months (June-July-August) in the Northern hemisphere summer. The same time sequences (four seasons with different lengths) can be recognized in the meridional lightning distributions observed by OTD (Optical Transient Detector) and LIS (Lightning Imagine Sensor) as disclosed by the seasonal distributions of the daily SRF patterns.

The ratio of land area to ocean area is smaller in the Southern hemisphere than in the Northern hemisphere. The oceanic surface thermodynamics can influence the tropospheric thermal properties of the Southern hemisphere lands embedded in the oceans. The large oceanic thermal inertia seems to be manifested in the dynamics (speed) of the north-south lightning migration identified by the long lasting southern position of global lightning in the Southern hemisphere summer and by the time lag of the northward lightning migration as compared to the "solar marsh" in spring in spite of the fact that lightning is first of all a land related phenomenon. The springfall asymmetry of the migration speed is attributed to the different thermodynamical properties of land and ocean.

G. SÁTORI

Schumann Resonance Frequency (SRF)

The diurnal pattern of SRF is highly determined by the angular distance between the lightning source and the observer and characteristic for each SR mode and field component (Sentman 1995, Sátori 1996, Nickolaenko et al. 1998, Musthak 1999). The diurnal pattern of SRF is preserved if the source-observer distance is stable and it changes if the source moves with respect to the observer. In this way the time history of the north-south migration can be followed by the variations of SRF.

SRF data have been available in hourly time resolution from May 1993 up to the present at Nagycenk. Hungary. At first, the monthly means of the diurnal patterns of SRF have been computed. Collection of the SRF patterns into groups has been done by cross-correlation analysis. SRF patterns have got to a group depending on the values of the correlation coefficients in two adjacent months. Very high correlation coefficients (> 0.95) presented themselves in summer months of both hemispheres but with different number of months. The rest of the SRF patterns with lower correlation coefficients has got to the group of the transition (spring or fall) seasons. Just the sudden decrease of the correlation coefficients due to changing SRF patterns indicates the quick variations in the source-observer geometry in these transition seasons. Four characteristic shapes of mean daily SRF were identified corresponding to the four seasons separately for the 1st and 2nd SR modes as shown in Fig. 1a,b.

OTD/LIS Lightning Observations

OTD/LIS lightning data have been used (Christian et al. 2003) to reveal the results exhibited by SRF on the dynamics of the north-south migration of lightning. Meridional lightning distributions have been determined in world-wide sense (Fig. 2a) and then for the longitudinal range of Americas (Fig. 2b), Africa/Europe (Fig. 2c), as well as, the Maritime Continent /Asia (Fig. 2d) in every month. The same correlation analysis has been done for the OTD/LIS data as in case of SRF. The four seasons were identified by the similar meridional lightning distributions. The different duration of the Northern and Southern hemisphere summers is again striking. The meridional lightning distribution exhibits rather stable position int he Southern hemisphere during five months (Nov-Dec-Jan-Feb-March) both in global sense and the different longitudinal ranges with exception of the Maritime Continent/Asia where it is only four months while the lightning distribution is only

SCHUMANN RESONANCE OBSERVATIONS

Fig. 1a. Monthly means of the diurnal frequency patterns in four seasons in case of the 1st SR mode as observed int he Széchenyi István Geophyiscal Observatory at Nagycenk

Fig. 1b. Monthly means of the diurnal frequency patterns in four seasons in case of the 2nd SR mode as observed int he Széchenyi István Geophyiscal Observatory at Nagycenk

Fig. 2a. Global meridional lightning distributions observed by OTD/LIS satellites in the four seasons grouped on the base of the result of the cross-correlation analysis

Fig. 2b. Meridional lightning distributions in Americas observed by OTD/LIS satellites in the four seasons grouped on the base of the result of the cross-correlation analysis
SCHUMANN RESONANCE OBSERVATIONS

Fig. 2c. Meridional lightning distributions in Africa/Europe observed by OTD/LIS satellites in the four seasons grouped on the base of the result of the cross-correlation analysis

Fig. 2d. Meridional lightning distributions in Asia/Maritime Continent observed by OTD/LIS satellites in the four seasons grouped on the base of the result of the cross-correlation analysis

G. SÁTORI

Fig. 3. The latitudinal positions indicate a longish dwell time of lightning in the Southern hemisphere summer, especially in America and Africa

stable for three months in the Northern hemisphere summer bot hon global sense and in the three main land regions.

The latitude of the center of the meridional lightning distribution was computed in every month in case of global lightning and that of the three main lightning regions as shown in Fig. 3. The latitudinal range covered by the annual lightning migration is the narrowest for Africa/Europe and the widest for the Asia/Maritime Continent.

Discussion

The global lightning doesn't follow the Sun in the Northern hemisphere winter months of the year during its northward migration from the southern latitudes to the northern ones (Fig. 4.). There is about one month time lag with respect to the "solar march" in spite of the fact that lightning is dominantly a land related temperature dependent phenomenon. The time lag rapidly disappears between August and September when the migration speed is the highest backward in south direction. This behavior of the global lightning has been recognized by Schumann resonance frequencies and revealed by satellite (OTD/LIS) lightning observations.

Figure 5 shows annual surface air temperature variations for some land stations in both hemispheres and in the South Pacific. The temperature profiles of tropical South Pacific and Southern hemisphere lands exhibit common characters with high and rather stable temperatures from November to March while the temperature maximum is confined only for three months (June–July–August) in the Northern hemisphere lands.

Fig. 5. Annual surface air temperature variations in the South Pacific and for some land stations in both hemispheres

G. SÁTORI

Conclusion

The oceanic surface thermodynamics can influence the tropospheric thermal properties of the Southern hemisphere lands embedded in the oceans. The large oceanic thermal inertia seems to be manifested in the dynamics (speed) of the north-south lightning migration identified by the long lasting southern position of global lightning in the Southern hemisphere summer and by the time lag of the northward lightning migration in spring in spite of the fact that lightning is first of all a land related phenomenon. The spring-fall asymmetry of the migration speed is attributed to the different thermodynamical properties of land and ocean.

Acknowledgement

This work was supported by the Hungarian Scientific Research Fund NI 61013.

- Christian Hugh J.; Blakeslee R J, Boccippio D J, Boeck W L, Buechler D E, Driscoll K T, Goodman S J, Hall J M, Koshak W J, Mach D M, Stewart M F 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., Vol. 108 No. D1 10.1029/2002JD002347
- Musthak V, Boldi R, Williams E 1999: Schumann resonances and temporal-spatial dynamics of global thunderstorm activity. Proceeding of ICAE99, Guntersville, Alabama, 698–700.
- Nickolaenko A, Sátori G, Zieger B, Rabinowicz L M, Kudintseva I G 1998: Parameters of global thunderstorm activity deduced from the long-term Schumann resonance records. J. Atm. Solar-Terr. Phys., 60, 387–399.
- Sátori G 1996: Monitoring Schumann resonances II. Daily and seasonal frequency variation. J. Atmos. Terr. Phys., 58, 1483-1488.
- Sentman D 1995: Schumann Resonances, Handbook of Atmospheric Electrodynamics, H Volland ed., CRC Press, 267–295.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 96, NO. A12, PAGES 21,115–21,123, 1991

Long-term variations in pulsation activity and their relationship to solar wind velocity, geomagnetic activity, and F2 region electron density

B. Zieger

Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, Sopron

Abstract

Significant 11-year, annual, and semiannual variations of the total pulsation activity at the mid-latitude station Nagycenk are reported and compared with solar wind velocity, geomagnetic activity, and F2 region electron density. Monthly average data from 1957 through 1989 were analyzed using the discrete convolution filtering technique. The 11-year variation of the total pulsation activity is closely related to the 11-year solar wind cycle supposedly through solar wind controlled pulsations. Its annual variation reflects the combination of two effects: one is the annual variation of the solar wind due to interstellar wind, and the other is some damping mechanism related to F2 region electron density. The nature of this ionospheric damping has not been clarified yet. The semiannual variation of the total pulsation activity, however, seems to be controlled mainly by the geomagnetic activity. Occurrence frequency and amplitude data for pulsations in 12 period bands ranging from 1 s up to 10 min were also involved in order to clarify the contribution of different types of pulsations to the total pulsation activity. It was found that the total pulsation activity refers mainly to Pc3 pulsations and, that the pulsations with a period of 20–25 s, which correspond to the eigenperiod of field line resonance at L < 2, have the strongest correlation with solar wind velocity.

American Geophysical Union 1991

Index Terms: 2752 Magnetospheric Physics: MHD waves and instabilities; 2736 Magnetospheric Physics: Magnetosphere-ionosphere interactions; 2784

Magnetospheric Physics: Solar wind-magnetosphere interactions.

Citation: Zieger, B. (1991), Long-term variations in pulsation activity and their relationship to solar wind velocity, geomagnetic activity, and F2 region electron density, J. Geophys. Res., 96(A12), 21,115–21,123.

III. REMEMBERINGS

MY RESEARCH (DEVELOPMENTS) CONNECTED TO THE OBSERVATORY

A. Ádám

1. An appropriate place is looking for the electromagnetic observatory

Professor K. Kántás, the director of the Geophysical Research Laboratory of the Hungarian Academy of Sciences in Sopron and head of the Department for Physics and Geophysics at the Technical University also in Sopron planned to built up an electromagnetic (EM) observatory near Sopron to participate at the joint research works of the in-coming International Geophysical Year in 1957. It was our task (Antal Ádám, Pál Bencze, Ákos Wallner) in 1955 to find an electromagnetically noise free, and geologically quiet place for the observatory. Professor Kántás was thinking about the nearby area of the Hungarian-Austrian border in the Sopron Mountains where nobody could disturb the measurements being an area severely guarded by the military. We selected the surrounding of the Muck peak and started with magnetic measurements with Schmidt-type magnetometers. Meantime, we have to ask the frontier guards to check us with their (iron) arms at a distance far away enough, not disturbing the measuring results. At the second step a horizontal loop of great surface has been laid out to measure the time variations of the vertical magnetic field to detect the electric inhomogeneities of the subsoil. (It was a very hard work to use a lot of cable drums for building up a great loop.) From geophysical point-of-view this area could satisfy our requirement, nevertheless, it has to be rejected being closely guarded border region and therefore entering it always needed special permission from the frontier guards.

To eliminate these inconveniences Pál Bencze continued to search for a more appropriate place and he found it at the southern shore of the Lake Fertő in a calmly ascending hill (terrace) near the linden-tree alley of the famous Széchenyi family. Later P. Bencze looked after the observatory building here in 1956–1957.

The telluric recording started in August 1957 according to the programme of International Geophysical Year.

Fig. 1. Basement depth (or thickness of the sediment) deduced from telluric measurements along a profile south of Lake Fertő (Wallner 1977)

2. The geological and geophysical structure of the observatory as it has been described – among others – by Ádám et al. (2000)

A short summary is cited here from this paper: The crystalline schists of Sopron Mountains are thrust into a depth of about 2000 m along NE-SW striking fault towards SE from Sopron in the line Balf-Kópháza-Harka. The deep range beginning here is closed toward E by a high corresponding to the Mihályi gravitational maximum. The crystalline basement has an amphitheatre-like structure open towards SW in the vicinity of the village Nagycenk. The observatory lies on the northern slope of this local deep. The thickness of sediments is here about 1500 m.

This structure was originally determined by gravity and reflection seismics (report has been given by Szénás, 1957), later by detailed telluric (Wallner 1977) and magnetotelluric measurements (e.g. Ádám 1963, Ádám and Verő 1967). (An E-W telluric profile is shown in Fig. 1 (Wallner 1977).) (See later the magnetotelluric results.)

3. Early instrumentation of the observatory and start of the pulsation research

The first recording instrument of the observatory was the T9 type telluric recorder (Fig. 2) (Ádám 1958, Ádám and Verő 1958) manufactured in the section of the Geophysical Instrument Factory (Budapest) allocated to our Laboratory to provide those 60 instruments of our design ordered by the Chinese Geological Ministry Peking after a successful exhibition and field test telluric measurements in China in late 1955 and early 1956.

DEVELOPMENTS CONNECTED TO THE OBSERVATORY

Fig. 2. Photo of the T9 telluric recorder (Ádám 1958)

During my stay in Peking Prof. Kántás initiated a synchronous telluric measurement between Peking and Sopron between January 9 and 14. I measured with Ernő Takács in the Peking Geomagnetic Observatory. My colleagues in the Laboratory and in the Geophysical Department of the University did it near Sopron. By comparing of the recordings we stated that the day-type Pc pulsations have a very large dimension (in our case the longitude difference between the measuring sites was almost 100°). These results were published by Prof. Kántás (1956) in a Chinese geophysical journal, and we also referred them e.g. by Ádám et al. (1966). A figure from this paper (Fig. 3) shows the parallel variation of the total telluric field and their correlation. — This experiment can be taken as the beginning of the long research of the electromagnetic pulsations in our institute.

4. Study of the inhomogeneities of the basement structure of the Pannonian Basin by telluric currents using the observatory as the basic station

The lot of telluric instruments manufactured in the Sopron section of the Geophysical Instrument Factory (Budapest) had to be tested by field measurements. We used this occasion and/or possibility to carry out synchronous measurements with these instruments in different parts of the country. In addition we collected the telluric recordings made by partner institutions/companies (e.g. ELGI, OKGT, MU) in their base stations in countryside. All data obtained by this way have been referred to those of our Nagycenk observatory where the continuous recording of the telluric field ran since August 1957.

Fig. 3. a) Time variations of the total telluric field measurement simultaneously in Peking and Sopron in January 1956. b) The relation between the above values (Ádám et al. 1966)

The data processing of the recordings has been by determination of the telluric absolute ellipses (using Verő's gradient method (1960)) after separation corresponding to dominant period ranges of the telluric field. We got by this technique relative telluric frequency sounding curves for more than 60 stations in the country. These enabled us to construct different telluric maps reflecting the deep structure of the Pannonian Basin as follows:

- The first telluric isoarea map of the whole country at 25 s showing the main features of the basement of the Pannonian Basin (Fig. 4). This was the base of early tectonic speculations of V. Scheffer on the Vardar threshold in the Pannonian Basin.
- Relative frequency sounding maps constructed from the different segments of the curves corresponding to period differences, e.g. 10–25 s, 25–100 s, 100–500 s, 500–1000 s. The map of 25–100 s clearly shows with the negative values the – later very detailed studied – Transdanubian Conductivity Anomaly (Fig. 5).

About this results we published papers in Hungarian and in German, too, especially in the *Freiberger Forschungshefte* (Ádám and Verő 1964, 1965, 1967).

150

Fig. 4. Telluric isoarea map of Hungary determined with 25 s variations (Ádám and Verő 1967)

Fig. 5. Map t_{25-100} of Hungary on the basis of relative telluric frequency soundings (Ádám and Verő 1967)

152

5. Instrument developments based on the experiments got in the observatory

The first results we obtained by the magnetotelluric (MT) method and the automatization of the telluric measurements required new instrument developments. First the T9 telluric recorder —manufactured in great series in Sopron — was updated. More simple and reliable switches and film/paper rolling mechanism were used in the new T14 instrument which also got a more attractive designed form. This new recorder served for a long time in our observatory for the so-called "quick recording of pulsations". This recorder served in the partner institutions not only for the telluric/magnetotelluric measurements, but for the very long range geoelectric soundings (in some cases AB > 10 km) too, having a very special isolation system between the current and high voltage circuits in it.

To determine the telluric absolute ellipses (Ádám et al. 1962) in a more simple way we designed a so-called "total-variation counter" (Fig. 6). "Total" means sum of the absolute values of all variations. This instrument measures the total variations of the 3 components of the telluric fields by optically digitizing them with help of a cylinder mirror with surface divided by 0.5 mm wide reflecting or not reflecting parts. In the focus of the mirror there is a phototransducer connected to the counter through appropriate electronics. The time variation of the 3 telluric components — represented by the deviations of the galvanometers — can be counted in unites of 0.5 mm for any time interval. About successful experiments in the observatory has been reported by Ádám et al. (1968). This was the first digital geoelectric instrument. The idea of this instrument had been realized by ELGI in its TEM80 which is already fully electronized.

Great efforts have been done to develop highly sensitive magnetic instruments for MT. We opened into two directions. A fluid damped static variometer has been designed following the principle of the Schlumberger galvanometers. In this respect our partners were in the Geophysical Instrument Factory - Aurél Ponori Thewrewk and L. Major. This basic instrument has been built into a phototransducer to get high sensitivity (in scale value 0.01 nT on the recorder) (Ádám and Major 1967) (see Fig. 7). This variometer served a lot in our almost all long period magnetotelluric soundings before buying the digital MT instrument from the Polish Geophysical Institute (Warsawa).

Fig. 6. Photo of the total variation counter

For recording magnetic variations of higher frequency than 0.1 Hz different types of induction coils have been developed partly for our observatory (e.g. for the pearl type pulsations and ELF signals) partly for our partners (ELGI, OKGT, etc.) who had to study the layer structure of the sediments by magnetotellurics not only the total thickness of the sediment cover. (The pearl type pulsations record in the observatory was later strongly disturbed by the electrification of the nearby railway.)

Our induction coil consisted of 2 m long supermalloy core with a coil of 500.000 turns. Its scale value could reach the μ T (Ádám and Horváth 1976). ELGI started with this coil to develop its first digital MT system (DEF1). Of course, all our experiments have been done in our observatory.

Our greatest instrument development was to design a five channel audiomagnetotelluric (AMT) instrument for synoptic registration and tensorial measurements with field data processing in a co-operation with the Geophysical Department of the Oulu University (Finland). This instrument contains the full magnetotelluric data processing software completed by that one for the determination of the complex induction vector (MV) for 12 frequencies from 4.3 Hz to 2300 Hz (Fig. 8). The on-line measurements of all MT and MV data in the 80's was a great success. A lot of investigation in the Eastern Alps and in the Southern Bohemian Massif have been carried out by using this instrument (Ádám et al. 1988, Arič et al. 1997).

DEVELOPMENTS CONNECTED TO THE OBSERVATORY

Fig. 7. Photo of the MTV-2 variometer (Ádám and Major 1967)

6. The Observatory as "magnetotelluric etalon" in Hungary

Our magnetotelluric measurements started at the very beginning of the sixties (last century) both in the field (Ádám and Bencze 1961) and in the observatory. The MT results obtained in the observatory initiated a lot of new ideas concerning the anisotropy of the distribution of the (MT) electric resistivity, the deep structure of the Earth in the Pannonian Basin, etc. (Ádám 1963). Methods have been elaborated for the determination of the magnetotelluric anisotropy for a large period domain (Ádám 1964). Later in papers (e.g. in the *Nature*, Stegena et al. 1971) it has been emphasized that the magnetotelluric anisotropy could be a useful tool in the study of the plate tectonics. On the MT sounding curves of the observatory it has been at first detected that the conductive asthenosphere — corresponding

Fig. 8. On-line audiomagnetotellurics instrument (Ádám et al. 1988)

Fig. 9. MT sounding curves measured in the observatory (Ádám et al. 1981)

to the Gutenberg's low velocity layer in the upper mantle — has a very shallow position — 60 km depth — in the hot Pannonian Basin (Ádám 1963). Later this statement stimulated me to find relation between the depth of the asthenosphere and the regional heat flow in general (Ádám 1978). A resistivity decrease corresponding to the mineral phase transition at the depth 410 km also appeared in the magnetotelluric sounding curves of the observatory (Ádám and Verő 1967, Ádám et al. 1981). (See here one of the most complete MT sounding curves in Fig. 9.)

The observatory during the 80's became an etalon for testing of different magnetotelluric instruments partly developed in the country (e.g. ELGI) or imported (e.g. OKGT). One of the most precise sounding has been done by the OKGT's Phoenix MT instruments in 3 nearby sites of the observatory using the "remote reference stations" (Report of Z. Nagy, 1986).

By this measurements the geoelectric structure of the subsoil of the observatory also become better known.

156

7. Summary

Of course, the mentioned different experiments which were carried out in our observatory during decades are "only" additional works to the primary task of an observatory i.e.: to record the geomagnetic/ionospheric etc. variations for long time study of the physics of Earth and its environment (magnetosphere, ionosphere, Sun-Earth relation, space weather, etc.). Thus changes in the geoelectromagnetic transfer functions have been detected during the solar eclipse August 11, 1999 (Ádám et al. 2005).

Our observatory has been prepared for its primary tasks since the very beginning of its activity (August 1957) by application and completion of its instrument pool. The mentioned "additional" works and their results partly helped to make acquaintance with the geophysical (geological) background of the observatory, partly helped to develop instrument in physically known circumstances which later served the observatory in his activity.

- Ádám A 1958: Über ein modifiziertes tellurisches Schurfgerät und dessen Verwendung zu tellurischen Untersuchungen grosses Ausmasses. Freiberger Forschungshefte C, 45, 52–61.
- Ádám A 1963: Study of the electrical conductivity of the Earth's crust and upper mantle. Methodology and results (in Hungarian). Dissertation, Sopron, pp. 111.
- Ádám A 1964: Über die Berechnung der magnetotellurischen MT Anisotropie. Freiberger Forschungshefte C, 168, 1-48.
- Ádám A 1965: Einige Hypothesen über den Aufbau des oberen Erdmantels in Ungarn. Gerlands Beiträge zur Geophysik, 74, 20-40.
- Adám A 1978: Geothermal effects in the formation of electrically conducting zones and temperature distribution in the Earth. *Physics Earth Planet. Interiors*, 17, 2, 21–28.
- Ádám A, Bencze P 1961: Experiments with the magnetotelluric method (in Hungarian). Magyar Geofizika, 2, 57-69.
- Ádám A, Horváth J 1976: The development of magnetic sensors in the Geodetical and Geophysical Research Institute of the Hungarian Academy of Sciences. Proceedings of the 20th Geophysical Symposium, Budapest-Szentendre, 15-19. 9. 1975, M Nagy (ed.) Budapest, OMKDK-Technoinform, 703-710.

A. ÁDÁM

- Ádám A, Major, L 1967: Stabilized high-sensitivity immersion magnetic variometer for magnetotelluric investigations (Type MTV2). Acta Geod. Geoph. Mont. Hung., 2, 211-215.
- Ádám A, Verő J 1958: Das Erdstromobservatorium bei Nagycenk (Ungarn). Geofisica Pura e applicata, 39, 126–151.
- Ádám A, Verő J 1964: Ergebnisse der regionalen tellurischen Messungen in Ungarn. Acta Technica, 47, 63-77.
- Ádám A, Verő J 1965: Über die Ursachen der Erdstromverteilung in Ungarn mit besonderer Berücksichtigung der Geologie des Landes. Freiberger Forschungshefte C, 174, 7-34.
- Ádám A, Verő J 1967: Latest results of electromagnetic measurements in Hungary (in Hungarian). *Geofizikai Közlemények*, 16, 25-52.
- Ádám A, Erkel A, Szabadváry L 1962: Neue ungarische geoelektrische Instrumente. Geofisica pura e applicata, 52, 127–138.
- Ádám A, Verő J, Wallner Á 1966: Die räumliche Verteilung der Pulsationen des elektromagnetischen Feldes der Erde. I-II. Teil. Acta Geod. Geoph. Mont. Hung., 1, 379-417.
- Adám A, Bencze P, Wrana J 1968: The model of the total variations counter (in Hungarian). Magyar Geofizika, 9, 30–35.
- Ádám A, Verő J, Cz. Miletits J, Holló L, Wallner Á 1981: The geophysical observatory near Nagycenk. I. Electromagnetic measurements and processing of data. Acta Geod. Geoph. Mont. Hung., 16, 333-351.
- Ádám A, Tiikkainen J, Horváth J, Hjelt S.E, Varga J, Saastamoinen R, Verő J 1988: A five channel audiomagnetotelluric AMT instrument for synoptic registration and tensorial measurement with field data processing. Acta Geod. Geoph. Mont. Hung., 23, 63-73.
- Ádám A, Bencze P, Verő J 2000: The Nagycenk Geophysical Observatory and its long data series. In: Geomagnetism. Research Past and Present. W Schröder (ed.), Bremen-Rönnebeck, 142-156.
- Ádám A, Verő J, Szendrői J 2005: Solar eclipse effect on geomagnetic induction parameters. Annales Geophysicae, 23, 3487–3497.
- Arič K, Ádám A, Smythe D K 1997: Combined seismic and magnetotelluric imaging of upper crystalline crust in the Southern Bohemian Massif. First Break, Research Article, 15, 8, 265–271.
- Kántás K 1956: Results of the simultaneous measurements of telluric currents between Peking (China) and Sopron (Hungary) executed from 9th to 14 January 1956. Acta Geophisica Sinica, 5(2), 79-88.
- Nagy Z 1986: Report on the MT soundings in the Observatory near Nagycenk. Manuscript, OKGT

- Stegena L, Horváth F, Ádám A 1971: Spreading tectonics investigated by magnetotelluric anisotropy. *Nature*, 231, 442–443.
- Szénás Gy 1957: Report about the seismic refraction measurements on the basement around the telluric observatory of the Geophysical Research Laboratory of the HAS (in Hungarian). Manuscript
- Verő J 1960: Die Bestimmung der tellurischen Stationsellipsen. Gerlands Beiträge z. Geoph., 69, 5.
- Wallner Á 1977: Report on the telluric measurements made between Fertőrákos and Fertőszentmiklós (in Hungarian). Manuscript, Sopron

ATMOSPHERIC ELECTRIC AND IONOSPHERIC MEASUREMENTS IN THE GEOPHYSICAL OBSERVATORY NAGYCENK: SOME EARLIER AND RECENT RESULTS

P. Bencze

Measurements planned in the Geophysical Observatory Nagycenk of the Geodetic and Geophysical Institute of the Hungarian Academy of Sciences in Sopron were aimed at investigation of the electromagnetic field of the Earth. Thus, besides geomagnetic and earth (telluric) currents — as horizontal electric components of the electromagnetic field atmospheric electric measurements (vertical electric component) were also intended. At that time — at the end of the nineteen fifties, it was thought that the atmospheric electric field corresponds to the vertical electric component of the electromagnetic field. Shortly, it turned out that this does not correspond to the facts, however, atmospheric electric measurements were continued.

As it was not possible to buy atmospheric electric instruments, it was necessary to construct and build them in the Laboratory. The relatively most simple instruments were an equipment for recording of point discharge currents and an apparatus for measurement of the atmospheric electric potential gradient (field strength).

Point discharge currents are recorded using a tip made of rust-proof steel put at the end of a mast on the roof of the atmospheric electric station in a height of 8 m. Currents are recording with a sensitive galvanometer. The potential gradient is measured by a radioactive collector placed in a height of 1 m above the ground and the grid current of a (radio) tube operated in an inverted connection. The potential gradient measuring equipment has been checked by removing the radioactive preparation, and connecting a resistance of 10^{12} ohm parallel with the resultant resistance consisting of the isolation resistance of the collector, from the input resistance of the tube electrometer and from the inner resistance of a quadrant electrometer (Bencze and Märcz 1980). Applying a known voltage to this circuit and measuring the voltage on the above mentioned resultant resistance the insulation, the input and the transitional resistances representing the transitional resistance of the radioactive preparation could be determined. In this way devi-

Fig. 1. Latitude variation of thunderstorm activity. average number of thunderstorm days for July, ---- average number of thunderstorm days for October, ----- average number of thunderstorm days per year

ation of the potential gradient measured by the equipment and the actual value could be computed. Both measurements are carried out since 1960 and continued to date (Bencze and Märcz 1967a, 1981, Bencze 2001a, 2001b). Processed data were published in the Geophysical Observatory Reports.

Recording of point discharge currents is motivated by determination of the electric charge exchange between the Earth's surface and higher layers of the atmosphere. Quantity of charge transported by point discharge currents is established by the determination of the area formed by the recorded current variations and the base line (Bencze and Märcz 1963). It has been found that diurnal variation of both positive and negative charges indicate a maximum in the afternoon, as well as quantity of negative charges is greater, than that of positive charges. Concerning the seasonal variation, both positive and negative charges show maximum values in summer. The seasonal variation of the quantities of charge transported by point discharge has been explained by latitudinal variation of thunderstorm activity, thunderstorm area shifted in winter to the south (Bencze 1963) (Fig. 1).

Most interesting results of the point discharge observations seem to be results of a detailed analysis and classification of point discharge current variations according to the type of their temporal variation. Point discharge is produced by enhanced atmospheric electric field at peaks, edges, which takes place as a result of charge separation in clouds. Charge separation is initiated by upwelling air in low pressure

Fig. 2. Point discharge currents produced by a thundercloud of positive polarity

areas in the lower atmosphere. Study of current variations has shown that there are essentially single current variations of positive or negative sign, variations consisting of positive and negative currents following each other, and a series of positive – negative – positive current variations, or variations in reversed order (Bencze 1966). Single variations of positive or negative sign can be attributed to unipolar clouds. A pair of positive or negative departures may be due to successive unipolar clouds. A series of positive – negative – positive field variations can be due to a thunder cloud equivalent to an electric dipole with a positive charge center above and a negative one below. Thus, a thundercloud of such polarity approaching the observing site first effect of the upper positive pole would prevail followed in time by the effect of the lower negative pole with the thundercloud above the observing site and then again the effect of the upper pole would prevail as the thundercloud is moving off (Fig. 2). In case of the series negative – positive – negative, effect of an electric dipole of opposite polarity is observed.

Measurement of the atmospheric electric potential gradient were used not only for determination of its daily variation, which is characteristic of the environment's undisturbed state from atmospheric electric point of view (undisturbed state means no larger deviation from the daily variation observed above oceans). In continental areas, there are only a few places, first of all high mountains, where these undisturbed conditions are given. Our measurements have shown that the daily variation of the atmospheric electric potential gradient is only a little disturbed, first of all in winter (Bencze and Märcz 1967a).

The main topic of study of the atmospheric electric potential gradient in these vears has been investigation of temporal variations (fluctuations) of the potential gradient called atmospheric electric agitation. Fluctuations have been divided into four arbitrary selected period bands (0-6, 6-12, 12-24 and 24-60 min) and daily, as well as seasonal variation in the mean amplitude of these period bands determined (Bencze 1964). The daily variation of these period bands indicates different form, however, the seasonal variation shows winter maximum in case of all period bands. It has been established that both location of the station and effect of the global thunderstorm activity are responsible for the atmospheric electric agitation. It has also been found that the mean amplitude of the agitation is proportional to the magnitude of the atmospheric electric potential gradient. In a further study, connection of agitation with amplitude of the potential gradient and the wind, with sky cover and different air masses is analysed (Bencze 1965). Daily variation of the occurrence frequency shown by the agitation of the period band 0-6 min indicated daily variation with maximum occurrence by day in summer months, but afternoon maximum in winter months. Occurrence frequency was greater in winter, than in summer. In case of the period band 6-12 min, daily variation of the occurrence frequency indicated maximum occurrence by day in summer, but maxima shifted to night in the winter months. Occurrence frequency of this period band is greater in winter than in summer, however magnitude of the occurrence frequency decreased as compared with the former period band. The occurrence frequency of the period band 12-24 min shows similar variations, however. magnitude of the occurrence frequency decreased further. Considering the occurrence frequency of the period band 24-60 min, the daily variation does not follow a systematic change in course of the year, but magnitude of the occurrence frequency increased significantly. A study of the daily and seasonal variations of the dominant period band on the basis of their occurrence frequency has shown that in summer agitation belonging to the 0-6 and 6-12 min bands are the most frequent, while in winter the 12-24 and 24-60min period bands are dominant.

For registration of the less affected by local conditions (atmospheric pollution, humidity, wind) characteristic of the global atmospheric electric circuit is the vertical current occurring in fine weather areas of the Earth as load maintained by the global thunderstorm activity as generator in the circuit. Thus, the circuit consists of a generator connected to the atmospheric electric equalising layer in the bottom of the ionosphere. The circuit is continued in this layer in the direction of fine weather

Fig. 3. Collector screen for measurement of the vertical current

areas, there closed to the ground by the vertical current and back to thunderstorm areas. Besides vertical current the potential gradient and conductivity are characteristics of the atmospheric electric circuit. For registration of the vertical currents a collector screen of 1 m² surface was placed to ground level isolated (Fig. 3). The vertical current was recorded by a picoampermeter of high input resistance (Bencze et al. 1984). Unfortunately registration of vertical current have only been carried out up to one or two years.

The atmospheric electric field has not only a static part, but also an electromagnetic field, too, originating in lightning discharges. Experiments for registration of the ELF (extremely low frequency) band of this electromagnetic field began in order to extend the ULF frequency band used in magnetotellurics to higher frequencies. An inverted long wave-length L antenna and amplifier of a portable seismic equipment and a hot-wire recorder were used to record variations in this frequency band including Schumann resonances (Ádám and Bencze 1963).

Concerning ionospheric investigations, they began in the middle of the nineteen sixties. After it turned out that the atmospheric electric field does not correspond to the vertical electric component of the Earth's electromagnetic field. The ionosphere is closely coupled to the geomagnetic field e.g. by ionospheric current systems, the magnetic field of which appears in form of variations of the geomagnetic field. According to an agreement with the National Meteorological Institute, where vertical incidence sounding of the ionosphere has been carried out since the beginning of

Fig. 4. Sky wave record

the International Geophysical Year 1957–1958 and thus, the upper ionosphere has been studied, the Geophysical Research Laboratory of the Hungarian Academy of Sciences began the investigation of the lower ionosphere. At that time, the most simple procedures for study of the lower ionosphere used commercial transmitters working in the LF, MF and HF frequency bands. Frequency of the selected transmitter depends on the height region, from where information on the state of the ionosphere is needed. Concerning distance of the station, the transmitter should not be farther than a distance, which can be reached by radio waves needing only one single reflection from the ionosphere.

As transmitted radio waves are propagating partly along the Earth's surface (ground wave), partly backscattered from the ionosphere (sky wave), the two types of waves must be separated to get information about the state of the ionosphere. Sky waves bearing information can be separated from ground waves, if using a frame antenna it is just in a plane perpendicular to the transmitter-receiver direction. These waves are amplified by a heterodyne receiver tuned solely to the wave- length of the selected transmitter. Constancy of the receiver's tuning is achieved by using crystal filters in the different stages (Bencze et al. 1976). If sky waves of LF or MF transmitters reflected from altitudes of about 100 km are used, their relative amplitude can only be determined by day in case of large amplification receiver. Sky waves are namely, strongly absorbed by day in the D-region of the ionosphere, on the contrary, at night smaller amplification is also enough because of the vanishing D-region (Fig. 4). This method called A3 method enables determination of the ionospheric radio wave absorption. Initially two radio stations were selected, Ceskoslovensko (272 kHz) and Budapest (539 kHz). However, for application of this method, the field strength (transmitter power) of the transmitter must be constant. Unfortunately, transmitter power of Budapest was changed during the day, thus it was not suit-

Fig. 5. Variations of the critical frequencies foE and foF1 proportional to the maximum electron density in the E and F1 regions related to the total solar eclipse of August 11, 1999

able for us. Processing of data proved that the so called winter anomaly of ionospheric absorption is also present at the latitude of our observatory (Bencze and Märcz 1967b). This anomaly is due to excess ionization in winter caused by enhanced transport of NO, an easily ionisable component of the atmosphere from above.

Experiments related to vertical incidence sounding of the ionosphere began in 1992 following reduction of the staff in the Hungarian Meteorological Service. Time table of the staff reduction was to abolish those activities, which are only loosely linked to meteorology. Thus, vertical incidence sounding carried out in framework of the Meteorological Service in Békéscsaba has also been stopped. The equipment, an ionosonde type IPS 42 made in Australia was offered to our Institute. Installation of the ionosonde in our observatory took a long time. It was necessary to build the antenna system (transmitter and receiver) fixed to a tower of 30 m height. For placing the tower, increase of the observatory area was needed not to disturb measurement of the absolute value of the geomagnetic field components. The transferred P. BENCZE

Fig. 6. Ionogram recorded by the new ionosonde

ionosonde worked in analogue mode and this circumstance necessitated conversion of the equipment into digital mode. This has been done by J. Titheridge, who developed both the additional hardware and software parts for IPS 42 ionosondes. However the ionosonde could not produce ionograms of good quality, since the high frequency part of the ionogram was mostly not usable. But the low frequency part of the ionogram could be used e.g. for study of ionospheric sporadic E for estimation of the distance between patches of increased electron density within the stratification (Bencze et al. 2004). Another possibility of using the ionosonde proved to be the total solar eclipse of August 11, 1999. During the eclipse soundings were made every 3 minute and this frequent measurements enabled determination of electron density change in the E, F1 regions of the ionosphere, decrease of electron density with advance of the totality and its return to value observed before the eclipse (Bencze et al. 2007) (Fig. 5).

Meanwhile a new ionosonde constructed in the Space Research Center of the Polish Academy of Sciences arrived, which works with two identical antennas perpendicular to one another. This exact symmetry is needed because both the transmitter and the receiver antenna are used both for transmission and reception. This construction enables the possibility of drift measurements. An ionogram is shown in Fig. 6.

- Ádám A, Bencze P 1963: About the study of natural sources of low frequency electromagnetic energy (in Russian). Acta Techn. Hung., 43, 357-365.
- Bencze P 1963: The distribution of the quantities of charge transported by point discharge. Acta Techn. Hung., 43, 289-292.
- Bencze P 1964: Über den täglichen und jährlichen Gang der luftelektrischen Unruhe. Acta Techn. Hung., 47, 87–95
- Bencze P 1965: Zur Frage der Entstehung der luftelektrischen Unruhe. Pure and Applied Geophysics (PAGEOPH), 61, 173-182.
- Bencze P 1966: The annual variation of the ratio of the quantities of negative to positive charge transported by point discharge. Acta Geod. Geoph. Mont. Hung., 1, 93-105.
- Bencze P 2001a: The beginnings and the IGY. In: Geophysical Observatory Reports of the Geodetic and Geophysical Research Institute of the Hung. Acad. Sci., 1994–1998, 9–23.
- Bencze P 2001b: Experimental study of atmospheric electricity and the ionosphere. In: Geophysical Observatory Reports of the Geodetic and Geophysical Research Institute of the Hung. Acad. Sci., 1994–1998, 145–160.
- Bencze P, Märcz F 1963: On the study of point discharge currents (in Hungarian). MTA Műszaki Tud. Oszt. Közl., 32, 137–144.
- Bencze P, Märcz F 1967a: Atmosphärisch-elektrische und ionosphärische Messungen im Observatorium bei Nagycenk. In: Observatoriumsberichte des Geophysikalischen Forschungslaboratoriums der Ungarischen Akademie der Wissenschaften vom Jahre 1966, 143–152.
- Bencze P, Märcz F 1967b: Über die Messungen der ionosphärischen Absorption im Langund Mittelwellenbereich mit der Methode A3. Acta Geod. Geoph. Mont. Hung., 2, 409-414.
- Bencze P, Märcz F 1980: Determination of the scaling factor for the computation of the absolute value of the potential gradient in the Geophysical Observatory Nagycenk. In: Geophysical Observatory Reports of the Geodetic and Geophysical Research Institute of the Hung. Acad. Sci., 1980, 129–133.
- Bencze P, Märcz F 1981: The Geophysical Observatory near Nagycenk II. Atmospheric electric and ionospheric measurements. Acta Geod. Geoph. Mont. Hung., 16, 353-357.
- Bencze P, Horváth J, Märcz F 1976: A new equipment for the measurement of ionospheric absorption. In: Geophysical Observatory Reports of the Geodetic and Geophysical Research Institute of the Hung. Acad. Sci., 1975, 113–118.

- Bencze P, Szemerey I, Märcz F 1984: The measurements of the air-earth current in the Geophysical Observatory near Nagycenk. Acta Geod. Geoph. Mont. Hung., 19, 347-352.
- Bencze P, Buresova D, Lastovicka D, Märcz F 2004: Behaviour of the F1 region, and Es, and spread F phenomena at European middle latitudes, particularly under geomagnetic storm conditions. Annals of Geophysics Suppl., 47, 1131–1143.
- Bencze P, Heilig B, Zieger B, Szendrői J, Verő J, Lühr H, Yumoto K, Tanaka Y, Střeštík J 2007: Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations. Acta Geod. Geoph. Hung., 42, 23-58.

SUMMARY OF RESULTS OF PULSATION RESEARCH AT THE NAGYCENK OBSERVATORY

J. Verő

1. History, instruments, magnetotellurics

Since the establishment of the Nagycenk Observatory I supervised there the earth current records of several kinds. I also compiled the corresponding part of the Observatory Reports during the following three decades. The first presentation of the results of the observatory took place in 1958 at the Assembly of the German Geophysical Society in Leipzig. Later in the nineties I wrote several times about the history of the observatory. In connection with the solar eclipse in 1999 we investigated the effect of the eclipse on magnetotelluric parameters.

- Verő J 1959: Über einige Ergebisse des Erdstromobservatoriums bei Nagycenk in Ungarn. Zeitschrift f. Geophysik, 24, 307–317.
- Ådám A, Tiikanen J, Horváth J, Hjelt S-E, Varga J, Saastamoinen R, Verő J 1988: A five- channel audiomagnetotelluric (AMT) instrument for synoptic registration and tensorial measurement with field data processing. Acta Geod. Geoph. Mont. Hung., 23, 63-73.
- Verő J, Zieger B 1994: Upstream waves and field line resonances. Pulsation research at the Nagycenk Observatory during three solar cycles. In: Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. Geophysical Monograph 81, American Geophysical Union, 55-66.
- Cz. Miletits J, Holló L, Verő J, Zieger B 1994: Three solar activity cycles in geomagnetic research at the Nagycenk Observatory. In: Geophysics; Past Achievements and Future Challenges. W Schröder and M Colacino eds, 54–66.
- Verő J 1997: Solved and unsolved problems of pulsation research 40 years ago and today. Publ. Univ. Miskolc, Series A, Mining, 52, 65–79.
- Verő J 2001: Earth current measurements. In: Geophysical Observatory Reports of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, Years 1994–1998, Sopron. V Wesztergom ed., 25–44.
- Ádám A, Verő J, Szendrői J 2005: Solar eclipse effect in geomagnetic induction p parameters. Ann. Geoph., 23, 3487–3494.

J. VERŐ

2. Pulsation indices

It has been decided at beginning of the operation of the observatory to emphasize the description of the geomagnetic activity by means of indices for as many period bands as possible. An especially dens characterization was introduced in the period range of pulsations. The final version of the pulsations indices was described in a series of papers together with some examples of their use. Pulsation indices were published in the yearly reports of the observatory.

References

- Verő J 1961: Ein Versuch zur Trennung der einzelnen Frequenzbänder der Erdstromvariationen. Geof. Pura Appl., 49, 83–118.
- Verő J 1963: Die abgeänderte Methode zur Bearbeitung der tellurischen Schnellregistrierungen von 1960 an im Observatorium bei Nagycenk. Acta Technica Hung., 43, 101–108.
- Holló L, Verő J 1967: Zur Charakterisierung der Pulsationstätigkeit des elektromagnetischen Feldes für einzelne Tage und deren Anwendung. Acta Geod. Geoph. Mont. Hung., 2, 335-349.
- Holló L, Tátrallyay M, Verő J, Cz. Miletits J, Takács L 1972, 1973, 1975, 1978: Experimental results with the characterization of geomagnetic micropulsations I-VI. Acta Geod. Geoph. Mont. Hung., 7, 155-166, 7, 167-175, 7, 177-190, 8, 217-225, 10, 307-321, 13, 231-238.
- Holló L, Verő J 1982: Geomagnetic pulsation data of the Nagycenk Observatory of September 1977. Solar Geophysical Activity Reports, World Data Center, 2, 399–411.

3. Comparison between distant observatories

The earliest comparison of pulsation parameters between Hungary and China took place in the mid-fifties by A. Ádám. Such comparison led to the discovery of an UT component in the pulsation activity. Later geomagnetic arrays were used for the distinction of field line resonances (FLR) and upstream waves (UW) both types were traced at auroral and equatorial latitudes, too.

References

- Cz. Miletits J, Verő J 1971: Correlated Pc-type micropulsations observed at separate places. J. Atm. Terr. Phys., 33, 967–970.
- Cz. Miletits J, Verő J 1975: Vergleich simultaner Pulsationsspektren bei grossen Längenunterschieden. Acta Geod. Geoph. Mont. Hung., 10, 147–153.
- Verő J, Holló L, Egeland A, Brekke A 1990: Connections between high- and middle-latitude pulsations. J. Atm. Terr. Phys., 52, 789–797.
- Verő J, Holló L, Singh B P 1991: Geomagnetic pulsations at low- and mid-latitudes. Acta Geod. Geoph. Mont. Hung., 26, 253-263.
- Verő J, Le Minh Triet, Szendrői J 1992: Pulsations at the geomagnetic equator. Acta Geod. Geoph. Mont. Hung., 27, 177-184.

4. Field line resonance - Magnetospheric-ionospheric effect

The first investigations concerning ionospheric, magnetospheric effects aimed at the identification of certain connections with pulsations as e.g. the existence of a "memory" in the magnetosphere. A change of stations was operated in the late seventies and our group was the first to report a non-continuous period changes with latitude, that was the indications of the shell structure of FLR.

Comparisons of in situ measured satellite data with surface pulsation data reveal modification of incoming UW. In the following years a central problem of our investigations was to distinguish FLR and UW, thus papers in these to section are mostly dealing with both types.

The development of computers enabled us to used more sophisticated methods as dynamic spectra to study FLR. The first paper (1988) using this tool has shown that both types clearly appear at a station pair at L 1.9 and 3.3. Afterwards a five station change enabled us to study the temporal behaviour of the two types.

A detailed study of the beating phenomenon led to the estimation of the parameters of the resonant shells (thickness at the ground 100 km change of the period with latitude 10%/degree, number of waves in a beat about 10).

The mentioned chain of pulsation stations with some modification was operated again for the study of observed similarities between resonant shells of pulsations and whistlers ducts. A multi-station study of the pulsation activity during the 1999 total solar eclipse confirmed the switch-off FLR activity during the totality.

J. VERŐ

- Holló L, Verő J 1965: Zusammenhänge zwischen elektromagnetischen Pulsationen und der F2-Schicht. Gerl. Beitr. Geophysik, 74, 353-356.
- Verő J 1971: Vormittag-Nachmittag-Asymmetrie in der Aktivität der erdmagnetischen Pulsationen. Acta Geod. Geoph. Mont. Hung., 6, 305–317.
- Verő J 1974: Pulsation activity as a non-Markovian process. Acta Geod. Geoph. Mont. Hung., 9, 291-297.
- Miletits J Cz. 1980: Microstructure of the latitude dependence of Pc-type pulsation periods. J. Atm. Terr. Phys., 42, 563-567.
- Verő J, Holló L 1983: A comparison of Pc magnetic pulsations on the ground and at synchronous orbit. Acta Geod. Geoph. Mont. Hung., 18, 403-419.
- Verő J 1986: Experimental aspects of low-latitude pulsations A review. J. Geophys., 60, 106–120.
- Holló L, Verő J 1987: Comparison of one year of data on geomagnetic pulsations at geostationary orbit and at a low-latitude ground station. J. Atm. Terr. Phys., 49, 1147-1153.
- Cz. Miletits J, Verő J, Stuart W 1988: Dynamic spectra of pulsation events at L 1.9 and L 3.3. J. Atm. Terr. Phys., 50, 649–656.
- Cz. Miletits J, Verő J, Szendrői J, Ivanova P, Best A, Kivinen M 1990: Pulsation periods at mid-latitudes – A seven-station study. *Planet. Space Sci.*, 38, 85–97.
- Verő J, Cz. Miletits J 1994: Impulsive pulsation events and pulsation beats. J. Atm. Terr. Phys., 56, 433-445.
- Vörös Z, Verő J, Kristek J 1994: Nonlinear time series analysis of geomagnetic pulsations. Nonlinear Processes in Geophysics, 1, 145–155.
- Verő J, Holló L, Bencze P, Märcz F 1997: Whistler ducts and geomagnetic pulsation resonant field line shells near L = 2 – are they identical? J. Atm. Terr. Phys., 59, 1855–1864.
- Verő J, Zieger B, Szendrői J, Vellante M, Střeštík J, Lühr H, Best A, Körmendi A, Lichtenberger J, Ménesi T, Bencze P, Märcz F, Wesztergom V 2000: Connections between whistlers and pulsation activity. Annales Geophysicae, 18, 866-874.
- Verő J, Zieger B, Märcz F, Bencze P, Szendrői J 2002: Geomagnetic pulsations and the ionosphere. Acta Geod. Geoph. Hung., 37, 313–327.
- Bencze P, Heilig B, Zieger B, Szendrői J, Verő J, Lühr H, Yumoto K, Tanaka Y, Střeštík J 2007: Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations. Acta Geod. Geoph. Hung., 42, 23-58.

5. Upstream waves – Effects of solar wind and of interplanetary magnetic field

Geomagnetic impulses originating from the interplanetary medium often cause changes in the pulsation spectrum thus indicate interplanetary origin of the pulsations. As soon as interplanetary data became available data of the Nagycenk Observatory offered excellent possibility to compare interplanetary and pulsations data. Many citations to the two corresponding papers signalized that they were accepted as final proof of these connections. Changes in the direction of the interplanetary magnetic field (IMF) were found to immediately influence pulsation activity. The connection between IMF, solar wind and UW were repeatedly re-examined, when new aspects emerged.

By a comparison of in situ satellite data in the solar wind and surface pulsation data we detected the amplification of surface pulsation amplitudes some 3–4 minutes after the appearance of UW in the solar wind.

The geomagnetic array mentioned in connection with FLR enabled us to fined very quick transitions between UW and FLR. These transitions are connected to sudden changes in the IMF which destroy the existing resonant system. For the build-up of a new resonance a time interval of several minutes is necessary.

- Verő J 1970: Period changes of geomagnetic variations after disturbances. Acta Geod. Geoph. Mont. Hung., 4, 233–235.
- Verő J, Tátrallyay M 1973: Changes of geomagnetic micropulsations following sudden impulses. J. Atm. Terr. Phys., 35, 1507–1515.
- Verő J, Holló L 1978: Connections between interplanetary magnetic field and geomagnetic pulsations. J. Atm. Terr. Phys., 40, 857–867.
- Verő J 1980: Geomagnetic pulsations and parameters of the interplanetary medium. J. Atm. Terr. Phys., 42, 371-380.
- Holló L, Verő J 1985: On the immediate effect of cone-angle changes on geomagnetic pulsations. J. Atm. Terr. Phys., 47, 523-528.
- Verő J, Holló L, Potapov A S, Polyushkina T N 1985: Analysis of the connections between solar wind parameters and day-side geomagnetic pulsation based on data from the observatories Nagycenk (Hungary) and Uzur (USSR). J. Atm. Terr. Phys., 47, 557-565.

- Verő J, Holló L 1989: Geomagnetic sudden impulses and pulsation activity. Acta Geod. Geoph. Mont. Hung., 24, 369–384
- Verő J. Zieger B, Lühr H 1994: Upstream waves and surface geomagnetic pulsations. In: Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. Geophysical Monograph 81, American Geophysical Union, 55–66.
- Cz. Miletits J, Holló L, Verő J, Zieger B 1994: Interplanetary magnetic field-dependent and geomagnetic latitude dependent periods of pulsations – A re-evaluation. Acta Geod. Geoph. Hung., 29, 179–197.
- Verő J, Lühr II, Vellante M, Best I, Střeštík J, Cz. Miletits J, Holló L, Szendrői J, Zieger B 1998: Upstream waves and field line resonance: simultaneous presence and alternation in Pc3 pulsation events. Ann. Geophysicae, 16, 34-48.
- Verő J, Zieger B 1999: Re-examination of the connection between interplanetary magnetic field and Pc3 geomagnetic pulsations. J. Geoph. Res., 104, 12387-12397.

6. Winter anomaly

The winter anomaly, i.e. the strong attenuation of pulsation amplitudes during winter in years of high solar activity was discovered at the Nagycenk Observatory. Investigations in connection with this anomaly revealed several characteristic, as the appearance of the anomaly in the Southern hemisphere winter too. but with less intensity, the existence of a threshold in plasmaspheric-ionospheric plasmadensity, bellow which the anomaly does not appear. This threshold in foF2 is about 10–11 MHz and is slightly variable. The anomaly seems to be maintained during the very low night-time pulsation activity, too. Curiously, the attenuation is connected with the equatorial plasma density at L 2 even if it is essentially bound to hemispheres.

- Verő J 1965: Seasonal distribution of geomagnetic pulsations. J. Geoph. Res., 70, 2254– 2257.
- Verő J 1981: Changes of pulsation activity during two solar cycles. J. Atm. Terr. Phys., 43, 919–926.
- Verő J, Menk F W 1986: Damping of geomagnetic Pc3-4 pulsations at high F2-layer electron concentrations. J. Atm. Terr. Phys., 48, 231-245.
- Verő J, Best I, Vellante M, Lühr H, de Lauretis M, Märcz F, Střeštík J 1995: Relations of field line resonances and upstream waves and the winter attenuation of pulsations. *Ann. Geophysicae*, 13, 689–697.
- Verő J 1996: Solar cycle effect on Pc3 geomagnetic pulsations. J. Geophys. Res., 101, 2461-2465.

7. Long period variations

Indices were introduced at the Nagycenk Observatory for longer (periods 2–60 min) variations, too. Using them we found a delay of about one day in the activity of the 6–20 min period variations with respect to the 2–6 and 20–60 min period bands. In the latter band a secondary maximum of activity was found around local noon, in addition to the midnight maximum.

References

- Verő J 1959: Earth-current variations of different period in the observatorium near Nagycenk. J. Atm. Terr. Phys., 13, 375–376.
- Verő J 1967: Sur la possibilité d'une corrélation entre des pulsations magnétiques du type Pc avec les variations de plus longues périodes. Ann. Géophysique, 23, 581–584.
- Verő J, Wallner Á 1975: On the diurnal variation of the geomagnetic activity. Acta Geod. Geoph. Mont. Hung., 10, 239-246.

MAGYAR FUTIOMÁNYOS AKADÉMIA KÖNYVTARA

HISTORY OF MAGNETIC OBSERVATION

Á. WALLNER

The continuous recording of geomagnetic field was started in Hungary in Ógyalla (today Hurbanovo, Slovakia) at the end of the 19th century. In 1918 Ógyalla was annexed to Czechoslovakia. From 1918 till 1938 geomagnetic recording was restricted to the recording of declination. Between 1938 and 1945 Ógyalla belonged again to Hungary. The Hungarian Institute of Meteorology restarted the systematic measurement of the geomagnetic field under the leadership of Prof. Dr. György Barta at the end of 1938. After World War II, as Ógyalla became again part of Czechoslovakia, Prof. Barta started a provisional observatory in Budakeszi, and made efforts to establish a new geomagnetic observatory in Tihany. Thanks to his activity the new Observatory of the Eötvös Loránd Geophysical Institute in Tihany began his recording activity in 1954.

The International Geophysical Year 1957–1958 brought about the idea to establish a second geophysical observatory in Hungary by the Geophysical Research Laboratory of the Hungarian Academy of Sciences. The main aim was to record the natural electromagnetic field in a wide range, including variations of atmospheric, ionospheric, magnetospheric and extraterrestrial origin. Therefore we had to find a place with quiet geological conditions being free from man-made electric disturbances, and where the latter condition could be maintained in the future, too. We found a place, where these conditions were fulfilled, near to the southern shore of the Lake Fertő, between the villages Fertőboz and Hidegség. The place has been in the neighbourhood of Nagycenk, where count István Széchenyi the founder of the Hungarian Academy of Sciences is buried, therefore the Observatory was always called: Geophysical Observatory near Nagycenk, and is named now Széchenyi István Geophysical Observatory of the Hungarian Academy of Sciences.

The environment of the observatory has legal protection against industrialization causing vagabond currents.

The recording of earth (telluric) current was started in 1957 with instruments produced in the Laboratory. It was, however, necessary to complete earth current recordings with those of the geomagnetic field, too.

Fig. 1. The yearly means of geomagnetic absolute values in D, H and Z in the Observatory Nagycenk between 1961 and 2006

Geomagnetic instruments, namely variometer sets for recording H, D and Z components, as well as those for the measurement of the absolute values of these components had to be imported from abroad. This was not an easy thing among the economical conditions of the country in the late fifties. Two antimagnetic houses had to be built for the measurements, one for the continuous recordings (called relative house) and the other for the measurement of the geomagnetic absolute values (called absolute house). They were built from limestone, the roof from reed.

The continuous recording of the geomagnetic components H, D and Z, and the weekly measurement of the absolute value of these elements were started in July, 1960. The instrumentation was: two variometer sets of the type La Cour (made in Denmark) recording to 30×40 cm photo-paper sheets, two QHM-s (quartz-horizontal-magnetometer), one BMZ (balance-magnetic-zero) (also made in Denmark), a magnetic declinatorium and an Earth inductor (Askania). The magnetic declinatorium originally served in the Observatory Ógyalla, then in Budakeszi and in Tihany, but was later replaced by a magnetic theodolite in Tihany. Nevertheless, it was a very accurate instrument, and easy to handle. The Hungarian Television made a report in the Observatory in the late seventies, in course of which this old instrument was the most successful for the reporters, the longest report dealt with the measurement of magnetic declination by means of this ancient declinatorium.

HISTORY OF MAGNETIC OBSERVATION

Fig. 2. The yearly means of the geomagnetic total field F, and the Inclination angle I in the Observatory Nagycenk betyween 1961 and 2006

The QHM and BMZ instruments were compared in several geomagnetic observatories. Comparison measurements were made each years with Tihany, but several times in Niemegk (formerly GDR), too. The transport of the magnetic instruments into a foreign country was often rendered difficult by customs. When I travelled to Niemegk in 1967, I was ordered to get down from the international train in border station Sturovo (CSR) in order to make a declaration on the instruments being in my luggage, for which I had already get a customs permission in Sopron. Fortunately this formality took only about 15 minutes and the train waited till I came back.

The conventional magnetic instruments described formerly, were used until 1989. From 1989 till 1991 the measurements of magnetic absolute values were made with a vector proton magnetometer developed in the Observatory Niemegk. Since 1991 absolute measurements have been made by a triaxial fluxgate magnetometer a proton magnetometer (ELSEC 820).

Digital recording of the geomagnetic variations was also started by an ARGOS system (bought from the British Geological Survey) in 1991. The analogous photographic recording was run parallel during about one year.

Observatory reports of geomagnetic data has been published each year since 1961. As the observatory had in the first times the main aim of the continuous monitoring of the Earth's electromagnetic field of external origin, the chapter Geomagnetism was compiled in coincidence with the chapter Earth Currents. The activity indices reported were determined according to a linear scale, which increased by 7 nT broad steps. Only monthly and yearly averages of the absolute values of the elements were given. Since the beginning of the nineties, however,

Á. WALLNER

as the participation in INTERMAGNET was started. Since that the reports on geomagnetic measurements are compiled in accordance with the requirement of INTERMAGNET. Activity indices have been determined according to Bartels.

Besides the yearly publication of geomagnetic data in the Observatory Reports, we have direct contacts with other observatories, too. Since the end of the seventies special events (SSCs and solar flares) have been reported to the Ebro Observatory (Spain). Close connections and data changes took place from time to time with the Observatories Wien-Kobenzl, Niemegk, Prahatice, Belsk, Hurbanovo.

It is of interest to show the trend of the geomagnetic secular variation in the Observatory. In order to that the yearly mean values of the geomagnetic elements were plotted for the last 45 years, i.e. from 1961 until 2006. Figure 1 shows the yearly means of declination, of the horizontal and vertical components. A continuous increase in Z (and consequently in the total field (F), too, see Fig. 2), and an eastward trend in declination can be observed, while the trend of increase was stopped in H (horizontal intensity) in the late seventies, and even a small decrease arose until 1992. Since that the increasing trend appears again, but only in smaller degree. Thus the angle of Inclination (I) increased between 1978 and 2003 (Fig. 2).

1957 XI 14 aldasos mikedest Kirsin telhty hite As ornag legrigits equelemente jokivemscigait house a budomany legfiatclass baily i jak oz 6 shal Heyam de Echin Lorans Tad Empeter To nevenisit jo munkat, sol neps evedmoust. Darayholy In Epitoiper i Kaleteders Munch Egetem Seadenis' turnete hivan exclusioners unitsident! Lowate salut opinaresting Builder Ertekes, eredmenyes munket kinn & Ryber Vetoney The first notes, November 14, 1957 Job sikest hivan az Obnervatórium munhatarrainaly a nemzethöri geofizikai év filmjének magyar forgató croporty a Hypdin hunde Gir cangule Reino gula Burger larderty Shepedin Sumen Montmathula / November, 1958

Die Sophysikalishen Observatorien gehoren alle zu einer gigten Semiinkeps. Das Serphysikaliske Observatorium Collin bei Leigezij grift in vieren Sime Ne Kollegen Is observelviumhi Sopron mut winnill eine gute Entwikling. fie thatheling in your Mening to tellewishen Three het brown the star engl. Prof. A. Karl Funch larms Broglyp ikelache Fortilat In 11.12. 51. Kal Marx Unhanitit Ligging December 11, 1958 Magar Tudama'yo Ahadimia fetulirisga'lo bisotsa ganah latoga tasa allalura'lol may remeyekhel nerius a telep jovoje ele Selep ander Nagecus 1959. T. 1. Elin alusion Autolos Leands April 1, 1959

Rist hoan nghinh si phat trici va tien to cua tehoa hoe vat ly tia can cua Hungaric anh em, ta công hiện vào sử nghiệp phát tiven there has we The give noi chung va phe Xã Hi Chủ Nghia nói riêng. Ngay 27 thang 9 nam 1960 monhlbe Ne. till. Hot September 27, 1960 Waegyon nepen rönönjich a bedver obnewatoriumi veretest, a baratragos fogadtatist. B2 ELTE TTK. geoficitus hollgator: Vie June Tatrallyou Mariella lehlugen Norber & Valan Wistof Szilizeri Lajon Thanderon leter ling Albert Sole; al. Salat Peter Recessy give Vide Baldin Ben baby sitti pile Mecheni Aldelaziz Sipos possal mupidi lion Vincon Cendry Beyenzi Tren Booloky lanuas Howath Terenc Jekete Gulo Dollas Dorro pesto attila Vorio Loulo Eller This Cz.f. Feren Mercions Ference 1962 1962

Jono molto felice 1' aver visitate l'aspervatorio Seocirico, colla quina ed genetilis/imo. hug. aram, Gli stur de n' m'consuccio apreno unove ne all'arrenne. augroro un trion lamo! grape à' anne! Juigio Paciain Miliverneta i Firenze November 22, 1963 Josten bardro oadburdeny, si megTem evridrië Jeofizycane Observatorim - Joptonië, Jaten e catyle uzuelnim dle Uggarshiet Nolegoir za pozicim provationych pres mich observacji - citary problematykę badan. Facut . 15. x. 1965. Flad Sectizyti Warszawa. October 15, 1965

Угастники Семинари по последованию со спутен-ком, Кослос 261" быти стастива познакими с с хорошен упорном пункте ais payburun ben evon AH u humo Dupensopa ovagelinka T Ko gis smore xopomet boznoscenocmos noce 18. 08. 1969 Cinfund Deanafre g-my berge pus obscne R. Unite JODR A. Wennif Zatitad Geofinghi PAN Polska Buchille GFU ESAN, Praha - CESR Mauoneput)USSR USSA Liver T. RS. Rominie Deonan Eudre Vaili Fino August 18, 1969

300 - Sepone Mayor Keps Ellemoness Bricksay Menorine alkalmabil raygon tamelia gos helyours menulet vegetak: Vagrenke, 1971. junier 14 Homes Swaderne Stances, Acere Chulsseus 3. Soup June Ruend Bis June 14, 1971 Lynna cobetenax energuancist - insent word the again un un renges ates Bito pres & any ment. C Sullimm unitericory ogen normall c profito bunnepung Kouker. Frozer (USAMPAK) 24 marso 1976 (sup wanon, TTU, Ko HI COM) Decumpueba (27, Serun epag) Horall (Cususmup , MPKYTCK) Kuceneb (NFY, Renew yray) I. Sycanic (USD - 52) WDC - B2 March 24, 1976 1979-05-16 It has been a real pleasure to visit the fine and very well arganized observatory. But wishes ! Muistian Hulendery Division of geomagactions the Department of geophysics University of Green frand blacknos' Finish anglefiz Institute Juhan Holekarain Majit's Hekkerainen May 16, 1979

I am now gradeful for this Separaterity to renew my acqueentance with De Nota as In Verio and I look for ward to collaboration is one work that will lit be relieve on a warre day ! 6 Renor 105. Edlikungt. I have enjoyed very much my short stay in sepren and short visit to the observatory at Nazyrowk. I am grateful to Dr Adem and a Mars for making this visit possible and to Mair hospitality. Front A molhected Donver, Colorodo The visit to sopren has been very special because of the hospitality of our hosts. Dr. Adam and his collegges can be proud not only of theirs scientific work but their fine abilities as hosts. I am looking forward to returning. Pruce Dont uses SErver, cowerou 1981 August 24 Mit deur großen Dank für Ihre freundliche Einladung Naoshi Futenshime Geophys. Res. Lab. Univ. Tokyo 福島直 Address: 東京大学理学部 把球物理研究施設 1981

C'est avec found plainir fue pai visite l'observatoira de Napycente. Et mere incore four l'accenil foi la de reaerve durant mon seponsien, fin sera pe l'enfere le prelude à une fonctueuse collaboration le 22 mini 1985 1. AENVIELLE Institut de Physique du Gbbe Tour the - le place Juction -F-+5 230 PARIS LEDEN OS 1985年8月21日 美ましい程のきれいな量地です。水平経行しなる認知をしう 米国式ビほ ビきちいようちをい結果を出しているのに感いしました Hayden と Liszt と D-マの道の差たオン中での超調は大きレマ キックたいと思いメオ. 年北大·理 前部尚生. Takas Saile Thank you very much for this diferenting visit to the Nagycenk observatory, and especially for the marvellows hospitality of the Institute in Jopron. All best wishes to everyone. May we see some useful co-operative work in the future. Regards, Fred. Menk. Dopt. of Physics, University of Newcastle, N.S.W. Australia 268 21-8-85. Эчена прилейское впекай пение производиий обсерватория. Когется потелать коллегами успехов в наугиого работе и всего самого доброго в тендни. Бологное спасибо. С благодаризского Ли. Н. Полющиние 25.09. 25 1985

中国江海南地家局科校交流代表团参观了责任受到了整理 的接待、给我困勤、了浮梦的印象、有益于促进中的两国的斜极 学术之流, 祝贵台在《見》和知多开的和作中取得更大的成绩。 東西 ろとちん 寺領市 严新育 谢路把 沈大开 違思地 (kreek 1989年10月19日 October 19, 1989 انة لمد دوالم سروري أسأترد مذا المرصر المسرم - وانت لأشد في الحيد الحال الذي تترم مه ال رم الما طوم في المرصد - فأشد بالتدم العام المول à ممال فيا م المسام الأغ وفيا من السارة الدوامه . واحد كل المتاعيد بودا العن الرائع والأكول الات والزر مرزلت فرو والعا عد معة. فأتتم مرسا مدالشرم والرق ' عذا الممال فال الأيام LûI, د . عد الرفن عز م ما المعيدالتدين للمدت إعليه والحس Dr. Abd-El-Rady and - atting Hassaneen National Research 199- / 0/ch . Institute for Astronomy and Geophysics Helwan - Cairo - Egypt 28.5.1990 May 28, 1990

Könöngn? a forgataslor my falt segi pelgälet, fantas J'Ensan ideles delgosart fuddunt meg, & remetlight, hay a Tu neros is koresei lehedant. 95. jun. 15 HTV. Dimension addit Splat P/ June 15, 1995 为科学事业界生地之行着的神学是 是全人起的精华, 我 Sopron 就!! 能取得更难富的科学堂和。 1月日に月にえる(103) 蒙王子 松进 A3130 P\$\$\$ 1896. Marc 28 Christibying progratulousi nanym nggrentim tislignu, austionitege o brer watominm Jut. Gudinato W-we Towan Erust 1996-IV-23 Indasa Блалодарен прод. А. Адан да Boqueone weats incertits sty Eydeeny w obcep laropuro B Count March-April, 1996

PANREG Closing Mating 26 - 30 May 1997, Budepert Thank per for the very interating information ! and quel vience Bovecar (Wien) geol. Bunderanspart Minduction (K. Miraovin - Yocoscov. 12) Ad (MAGE Support) Saulich m (MAZI By) Bozović BRANishu (Geozavud, Beograd, Kugathura) Ing fich Geronyke, Matislam; Similie) Schara Jan, commins university pratichen ELECTRO Michan BEDLOGICAL SURVEY BRATISLAND Vand Gullo GEOHLBA TIRANA-ALBANIA. Mulos Knyich (Bratilan) Middelus (BRA Hinan) PrickT P. Reisto Mataingbeno D. hargentlac BUC (EBA Viana) G. Shaker, Lage and 7 Ohr (GS SR-Kince) Scubaloric Bgd. Yu. Dudko ato yshe (MA FI) TAFI Konings Ster ELGI walter dr. Kollphan 18C1 Biedermansdorf Drashowits (1 May, 1997

The global circuit measurements made here on a continuous basis are very valuable and may be unique in the world in The Sense that both 'DC' and 'AC' observations are in progress. Please by your bost to keep them going ! Bost Wishes Sach Williams MIT Lambridge Ma FB 24, 1997 February 24, 1997 平成11年8月4日 1999 Aug. 11 階版回食の 5美観測 E2(テン港に、Prof. Vino セの其同観測研究 ヒノス 歴史ある観測所を訪門(まん。 大州大学大学的理学网络科 教授 湯之 清文 D3 田中良昌 Thak you very much for your kind arrangements and collaborative, Solar 15 clipse Observations on August 11, 1999. Konto, Kyashu University. yoshimasa Tunaka August 11, 1999 25 Nov 1999 Beautifull observatory! Important for the Emopea and would wide metwok. Very menestral wait Her althof B. ZUFFEREr Emper Space Agery ESA. Bold Clid, Magyar Urtastatais Iroda

November 25, 1999

Tovobbi tikeres muchail trivanos a heichengi oste 6 Inventitional is a GGKI-unk, a nerodui n'an epicet Much' Unz 2000. novente 9 Nagon Frillen, hap a we'rado inneprogen scht relaten es megrimertekem ut a neurellorileg av limgarle otorerradi rinnol. Tovati mareret rir 2007 ! 2000. mor. 9. November 9, 2000 28. August '02 The unsive Fernsalsunday in Bayrischer Anolfunke releter con il Sopron eine sohr inspinienden Forselu - Community. Vala Dale F. di sel flenglisa Asfraque mot de childestitung be den Drelabeiten an Observatorian, die hoffenfing licht die letter wird seig dingen. G. Franke, Hude. 28.8. 102 Mit von der Portie Martin Eulleburg Universitat Frankfurt/Main August 28, 2002

Tro'lai tham Dar vat ly dia can Ssecheny too what they co whiling phat train more. Cae ban trong ryhving Witnem is the how tap kinh nghvin de kay dring car tas vit lý dụ câu d' Vigenam. Can on sy don try than time cue ban tingeyhily Westergon Viktor. Xinhen gay lai troy triby lei 2004-Szept 29 Leller Jun V Le Minh Tweet Sch co ak's unrederle as chosenativiabe. Megala niletta, hogy solal fejlidot. A victuari adlesed and depressible to swoothed as abbe i setutei connelitin silentatur. kono--September 29, 2004 1 September 2006 We have had a most veteresting visit to one of the major observatories of the World and kade tearnet a tot, We thank you all for the excellent demontrate Guiliand Bengt fuldud terune Sweden September 1, 2006

The Observatory site is searched for

At that time and nowadays

Name-giving ceremony, November 9, 2000

MAGYAR TUÐOMÁNYOS AKADÉMA KÖNYVTARA

..

æ

þ

